北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2023, Vol. 46 ›› Issue (6): 115-0.

• 论文 • 上一篇    下一篇

基于改进的粒子群优化算法的测冰系统温度补偿

于天河,吴迪   

  1. 哈尔滨理工大学
  • 收稿日期:2022-09-20 修回日期:2023-04-03 出版日期:2023-12-28 发布日期:2023-12-29
  • 通讯作者: 于天河 E-mail:ythaa@163.com

Temperature Compensation of Ice Measurement System Based on Improved Particle Swarm Optimization Algorithm

  • Received:2022-09-20 Revised:2023-04-03 Online:2023-12-28 Published:2023-12-29

摘要: 三端压电陶瓷片设计的结冰传感器测量值受温度的影响较大。为了提高传感器测量的准确度,提出了一种自适应模拟退火粒子群优化算法进行温度补偿。该算法将模拟退火算法和粒子群优化算法进行融合,采用非线性双曲正切函数来控制惯性权重系数的变化,利用线性变化策略来控制社会学习因子和自我学习因子的值,使寻优重点在不同阶段有所变化,自适应地改变惯性权重系数,社会学习因子和自我学习因子,并解决了算法容易陷入局部优解的问题。实验结果表明,经该算法温度补偿后,结冰状态下测量的误差减少3%左右,测量精度提高0.1mm,说明该补偿算法能有效地减小-5℃~-55℃的低温环境对传感器测量结果的影响,提高了测量精度。

关键词: 压电陶瓷, 结冰传感器, 温度补偿, 模拟退火算法, 粒子群优化算法

Abstract: The measurement value of the icing sensor designed with three-terminal piezoelectric ceramics is greatly affected by temperature. In order to improve the measurement accuracy of the sensor, an adaptive simulated annealing particle swarm optimization algorithm is proposed to compensate for temperature. This algorithm integrates the simulated annealing algorithm and the particle swarm algorithm, uses the nonlinear hyperbolic tangent function to control the change of the inertia weight coefficient, and uses the linear change strategy to control the values of the social learning factor and the self-learning factor, so that the optimization focus varies at different stages. The inertia weight coefficient , the social learning factor and the self-learning factor are adaptively changed, which solves the problem that the algorithm is easy to fall into the local optimal solution. The experimental results show that after the temperature compensation of this algorithm, the measurement error of the freezing state is reduced to about 3% ,  and the measurement accuracy is improved to 0.1mm, which indicates that the compensation algorithm can effectively reduce the influence of -5 ℃~-55 ℃ on the measurement results of the sensor and improve the measurement accuracy.

Key words: Piezoelectric ceramic, ice sensor, temperature compensation, simulated annealing algorithm; particle group optimization algorithm

中图分类号: