北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2023, Vol. 46 ›› Issue (1): 19-25.

• 论文 • 上一篇    下一篇

上下文信息多样聚合的图像修复算法

李海燕1,晁艳静1,余鹏飞1,李海江2,张榆锋1   

  1. 1. 云南大学
    2. 云南交通投资建设集团有限公司
  • 收稿日期:2021-12-20 修回日期:2022-05-07 出版日期:2023-02-28 发布日期:2023-02-22
  • 通讯作者: 余鹏飞 E-mail:pfyu@ynu.edu.cn
  • 基金资助:
    国家自然科学基金项目

Image Inpainting Algorithm with Diverse Aggregation of Contextual Information

  • Received:2021-12-20 Revised:2022-05-07 Online:2023-02-28 Published:2023-02-22

摘要: 为解决现有算法修复大面积不规则语义缺失图像时存在结构扭曲和纹理模糊的缺陷,提出了一种基于上下文信息的多样聚合图像修复算法首先,用编码器提取待修复图像的信息,估计缺失内容,经纹理信息生成模块融合来自各种感受野的上下文信息,增强缺失区域的结构与纹理信息;然后,经解码器恢复原始图像特征;最后,使用掩码匹配鉴别器对生成图像进行鉴别训练,结合对抗损失重建损失感知损失和风格损失共同优化模型,促进生成器合成清晰的纹理在公开数据集上,对所提算法进行训练和测试,实验结果表明,修复随机不规则大面积语义缺失图像时,所提算法可得到比对比算法更清晰合理的结构和纹理细节,其峰值信噪比和结构相似度等客观指标均优于对比算法

关键词: 图像修复, 上下文信息多样聚合, 编解码信息融合, 掩码匹配鉴别器

Abstract: To effectively solve the defects of structural distortion and blurry texture when repairing large and irregular semantic missing area images by using the existing algorithms, a diverse aggregation image restoration algorithm based on contextual information is proposed. First,the information on the damaged image is extracted by the encoder to estimate the missing content. Thereafter, the context information from various receptive fields is merged through the multi-information aggregation block to enhance the structure and texture information of the missing area. Then, the original image features are restored through the decoder. Finally, the mask matching discriminator is adopted to perform discrimination training on the generated image,and the model is optimized by combining the counter loss, reconstruction loss,perception loss and style loss to promote the generator to synthesize clear textures. The proposed algorithm is trained and tested on the public data set. The experimental results show that the proposed algorithm can obtain clearer and more reasonable structure and texture details than state-of-the-art when inpainting randomly irregular and large missing areas. Its objective indices such as peak signal-to-noise ratio and structural similarity are superior over the compared algorithms.

Key words: image inpainting , diverse aggregation of contextual information , encoding and decoding information fusion , mask matching discriminator

中图分类号: