北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2023, Vol. 46 ›› Issue (1): 26-31.

• 论文 • 上一篇    下一篇

基于Transformer和MLP的眼底血管分割算法

荣震宇,刘建毅   

  1. 北京邮电大学
  • 收稿日期:2021-12-01 修回日期:2022-03-23 出版日期:2023-02-28 发布日期:2023-02-22
  • 通讯作者: 刘建毅 E-mail:liujy@bupt.edu.cn
  • 基金资助:
    国家自然科学基金项目;  山东省重大科技创新工程项目

Retinal Blood Vessel Segmentation Based on Transformer and MLP

#br#   

  • Received:2021-12-01 Revised:2022-03-23 Online:2023-02-28 Published:2023-02-22

摘要: 为了解决眼底血管分割中存在的分割效果不佳数据过拟合和正负样本不均衡等问题,提出了一种转换器(Transformer)和多层感知机(MLP)结合的眼底血管分割算法首先,为预防数据过拟合问题,训练图像在输入模型前会执行多种数据增强操作;其次,设计一个融合了卷积模块的 Transformer 组成多尺度编码器对图像进行特征提取,以此获得鲁棒的多级特征信息;最后,使用 MLP 结构的解码器对特征图完成像素级的分类为解决正负样本不均衡的问题,引入了 Tversky 损失和二进制交叉熵损失的组合损失函数所提算法在多个数据集上都取得了良好的实验结果,优于现有的其他网络模型算法

关键词: 深度学习 , 多头自注意力 , 多层感知机 , 图像分割 , 眼底血管

Abstract: To solve the problem of poor segmentation effect, data over-fitting, and imbalance of positive and negative samples in fundus blood vessel segmentation, a retinal blood vessel segmentation algorithm based on transformer architecture (Transformer) and multilayer perceptron (MLP) is proposed. First, data augmentation is used on training images to prevent over-fitting. Then,several transformers fused with convolution modules are used as a robust encoder to gain multi-scale feature information. Finally, a decoder consisting of MLP is adopted to complete pixel-level classification on a feature map. In addition, the combination of Tversky loss and binary cross-entropy loss is applied to solve the sample imbalance problem. Experiential results on various datasets indicate that the proposed algorithm has a good performance,which is better than other existing algorithms.

Key words: deep learning , multi-headed self-attention , multilayer perceptron , image segmentation , retinal blood vessel

中图分类号: