[1] LIN Z W, CHEN Z Y, WU Q W, et al. Coordinated pitch&torque control of large-scale wind turbine based on pareto efficiency analysis[J]. Energy, 2018, 147(15):812-825. [2] 赵娟,陈斌,李永战,等.复杂背景噪声下风机叶片裂纹故障声学特征提取方法[J].北京邮电大学学报, 2017, 40(5):117-122. ZHAO J, CHEN B, LI Y Z, et al. Acoustic feature extraction method for fan blade crack fault under complex background noise[J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40(5):117-122. [3] 郭家昕,程军圣,杨宇.改进多线性主成分分析网络及其在滚动轴承故障诊断中的应用[J].中国机械工程, 2021, 33(2):1-8. GUO J X, CHENG J S, YANG Y. Fault diagnosis method of rolling bearing based on improved multi-linear principal component analysis network[J]. China Mechanical Engineering, 2021, 33(2):1-8. [4] 胡茑庆,陈徽鹏,程哲,等.基于经验模态分解和深度卷积神经网络的行星齿轮箱故障诊断方法[J].机械工程学报, 2019, 55(7):9-18. HU N Q, CHEN H P, CHENG Z, et al. Fault diagnosis for planetary gearbox based on EMD and deep convolutional neural networks[J]. Journal of Mechanical Engineering, 2019, 55(7):9-18. [5] NGUYEN V H, CHENG J S, YU Y, et al. An architecture of deep learning network based on ensemble empirical mode decomposition in precise identification of bearing vibration signal[J]. Journal of Mechanical Science and Technology, 2019, 33(1):41-50. [6] 蒲悦逸,王文涵,朱强,等.基于CNN-ResNet-LSTM模型的城市短时交通流量预测算法[J].北京邮电大学学报, 2020, 43(5):9-14. PU Y Y, WANG W H, ZHU Q, et al. Urban short-term traffic flow prediction algorithm based on CNN-RESNET-LSTM model[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(5):9-14. [7] WEN L, LI X Y, GAO L. et al. A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Trans Ind Electron, 2017, 65(7):5990-5998. [8] EREN L, INCE T, KIRANYAZ S. A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier[J]. Journal of Signal Processing Systems, 2019, 91(2):179-189. [9] 刘建伟,赵会丹,罗雄麟,等.深度学习批归一化及其相关算法研究进展[J].自动化学报, 2020, 46(6):1090-1120. LIU J W, ZHAO H D, LUO X L, et al. Research progress on batch normalization of deep learning and its related algorithms[J]. Acta Automatica Sinica, 2020, 46(6):1090-1120. [10] CHENG Y W, LIN M X, WU J, et al. Intelligent fault diagnosis of rotating machinery based on continuous wavelet transform-local binary convolutional neural network[J]. Knowledge-Based Systems, 2021, 216(1):106796-106808. [11] XU Z F, LI C, YANG Y. Fault diagnosis of rolling bearings using an improved multi-scale convolutional neural network with feature attention mechanism[J]. ISA Transactions, 2021, 110(3):379-393. [12] WAN L J, CHEN Y W, LI H Y, et al. Rolling-element bearing fault diagnosis using improved LeNet-5 network[J]. Sensors, 2020, 20(6):1693-1716. [13] WEN L, LI X, GAO L. A transfer convolutional neural network for fault diagnosis based on ResNet-50[J]. Neural Computing and Applications, 2020, 32(10):6111-6124. |