北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2022, Vol. 45 ›› Issue (1): 52-57.doi: 10.13190/j.jbupt.2021-103

• 论文 • 上一篇    下一篇

阶梯式图像去噪方法

王靖1, 姜竹青1, 门爱东1, 郭晓强2, 王智康3   

  1. 1. 北京邮电大学 人工智能学院, 北京 100876;
    2. 国家广播电视总局 广播电视科学研究院, 北京 100866;
    3. 莫纳什大学 医学护理与健康科学学院, 墨尔本 3800
  • 收稿日期:2021-05-23 出版日期:2022-02-28 发布日期:2021-12-16
  • 通讯作者: 姜竹青(1987—),男,讲师,硕士生导师,邮箱:jiangzhuqing@bupt.edu.cn E-mail:jiangzhuqing@bupt.edu.cn
  • 作者简介:王靖(1997—),女,博士生
  • 基金资助:
    国家自然科学基金项目(62002026)

A Ladder-Type Denoising Method

WANG Jing1, JIANG Zhuqing1, MEN Aidong1, GUO Xiaoqiang2, WANG Zhikang3   

  1. 1. School of Artifical Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. Academy of Broadcasting Science, National Radio and Television Administration, Beijing 100866, China;
    3. Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne 3800, Australia
  • Received:2021-05-23 Online:2022-02-28 Published:2021-12-16

摘要: 为了提高对原始红绿蓝(RAW)和标准红绿蓝(sRGB)2种格式的真实噪声图像的去噪性能,提出了一种基于卷积神经网络的阶梯式图像去噪方法。第一阶段,利用单个通道内空间结构信息对图像各个通道独立去噪,获得初步去噪结果。第二阶段,利用噪声图像在不同通道的相关性进一步去噪,获得增强的去噪结果。在所提方法中引入误差反馈机制来减少采样带来的信息损失;使用密集残差连接模块使得提取到的噪声图像特征能更有效地复用和传播;利用通道注意力使得网络有选择性地增强信息量大的特征,抑制无用特征。将所提方法与常用的其他去噪方法比较,实验结果表明,在达姆施塔特噪声数据集的RAW/sRGB数据集上,所提方法分别达到了49.55 dB和39.55 dB的峰值信噪比(PSNR);在跨通道数据集达到了39.52 dB的PSNR,较目前绝大多数方法具有更好的性能。

关键词: 卷积神经网络, 图像去噪, 误差反馈, 密集残差连接

Abstract: A ladder-type denoising method is proposed to improve the denoising performance for raw red green blue(RAW) and standard red green blue(sRGB) real-world images. In the first stage, each channel of the noisy image is denoised separately utilizing intra-channel structure information. In the second stage, the inter-channel correlation information of the noisy image is utilized to further denoise the whole image, and the final boosted denoising result is obtained. Error feedback mechanism is introduced to reduce the information loss caused by sampling. Additionally residual dense connection makes features more effective for reuse and propagation; channel attention selectively enhances features with large amount of information and suppress useless features. The proposed method is compared with other denoising algorithms, and the results show that the proposed method achieves 49.55 dB peak signal to noise ratio(PSNR) in RAW images and 39.55 dB PSNR in sRGB images on Darmstadt noise dataset, and 39.52 dB PSNR on cross-channel dataset, which realizes competitive performance in comparison with other denoising algorithms.

Key words: convolution neural network, image denoising, error feedback, residual dense connection

中图分类号: