北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2022, Vol. 45 ›› Issue (1): 1-6.doi: 10.13190/j.jbupt.2021-048

• 论文 •    下一篇

面向QoS需求的分簇自组织网络路由算法

杨灿1, 罗涛1, 刘颖1, 李泽旭2, 徐永庆2   

  1. 1. 中国电子科技集团公司第七研究所, 广州 510000;
    2. 北京邮电大学 信息与通信工程学院, 北京 100876
  • 收稿日期:2021-03-26 出版日期:2022-02-28 发布日期:2021-12-16
  • 通讯作者: 李泽旭(1991—),男,博士生,邮箱:vinzxoh@bupt.edu.cn E-mail:vinzxoh@bupt.edu.cn
  • 作者简介:杨灿(1976—),男,副总工程师
  • 基金资助:
    科技部国家重点研发计划项目(2017YFB0503000)

QoS Routing Algorithm in Clustered Self-Organizing Networks

YANG Can1, LUO Tao1, LIU Ying1, LI Zexu2, XU Yongqing2   

  1. 1. China Electronic Technology Group Corporation Seventh Research Institute, Guangzhou 510000, China;
    2. School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2021-03-26 Online:2022-02-28 Published:2021-12-16

摘要: 基于分布式分簇的网络管理架构,网络节点可以被划分成多个管理域,并由相应区域的簇首进行协同管理。为实现分布式网络场景中,业务差异化的服务质量(QoS)需求与多维度网络资源之间的高效按需匹配,提出了一种基于强化学习的路由调度算法,以降低端到端的时延和防止网络拥塞为目标,优化调度路径。所提算法可以通过簇首集中式和节点分布式2种方式实现,可以解决分布式环境下全局资源信息不完备的问题,有效保证跳变环境下网络的健壮性。将100个节点划分为4个管理域进行仿真验证。仿真结果表明,所提算法可以有效地降低业务的平均时延,并且在业务拒绝率、网络资源利用率方面均优于传统方法。

关键词: 多跳网络, 服务质量路由, 强化学习

Abstract: Based on the distributed and clustering network architecture, network nodes can be divided into multiple clusters, which can be managed by their corresponding cluster heads in a collaborative manner. In order to achieve on-demand, efficient matches between the differentiated quality of service (QoS) requirements and the multi-dimensional network resources, a reinforcement learning-based routing algorithm is proposed. The proposed algorithm aims to reduce end-to-end delay and prevent congestion by optimizing the routing path, which can be implemented in both centralized cluster heads and distributed nodes, so as to guarantee the robustness in a dynamic environment. The performance is evaluated by numerical simulations in a network with 100 nodes divided into four regions. The simulation results illustrate that the proposed algorithm can reduce average latency significantly. Besides, the algorithm proposed is superior to the minimum-hop method in terms of rejection rate and resource utilization.

Key words: multi-hop network, quality of service routing, reinforcement learning

中图分类号: