[1] 陈旭, 耿翔. 脑出血的研究现状和治疗进展[J]. 中华老年心脑血管病杂志, 2009, 11(12):947-949. Chen Xu, Geng Xiang. Research status and treatment progress of cerebral hemorrhage[J]. Chinese Journal of Geriatric Cardiovascular and Cerebrovascular Diseases, 2009, 11(12):947-949.
[2] 高明, 秦立国. 颅脑CT在脑出血诊断中应用体会[J]. 医学理论与实践, 2016, 29(20):3529-3530. Gao Ming, Qin Liguo. Application experience of cranial CT in the diagnosis of cerebral hemorrhage[J]. The Journal of Medical Theory and Practice, 2016, 29(20):3529-3530.
[3] 刘丰伟, 李汉军, 张逸鹤, 等. 人工智能在医学影像诊断中的应用[J]. 北京生物医学工程, 2019, 38(2):206-211. Liu Fengwei, Li Hanjun, Zhang Yihe, et al. Application of artificial intelligence in medical imaging diagnosis[J]. Beijing Biomedical Engineering, 2019, 38(2):206-211.
[4] Dou Q, Chen H, Yu Lequan, et al. Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks[J]. IEEE Transactions on Medical Imaging, 2016, 35(5):1182-1195.
[5] Payer C, Štern D, Bischof H, et al. Regressing heatmaps for multiple landmark localization using CNNs[J]. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2016, 2016:230-238.
[6] Zhu Wentao, Xiang Xiang, Tran T D, et al. Adversarial deep structured nets for mass segmentation from mammograms[C]//2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).[S.l.]:IEEE Press, 2018:847-850.
[7] Sarker M M K, Rashwan H A, Akram F, et al. SLSdeep:skin lesion segmentation based on dilated residual and pyramid pooling networks[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2018. Cham:Springer International Publishing, 2018:21-29.
[8] 李七渝, 张绍祥, 王平安, 等. 人体大脑数字化解剖模型的构建及可视化[J]. 解剖学报, 2005, 36(6):638-641. Li Qiyu, Zhang Shaoxiang, Wang Ping'an, et al. Construction of digitized anatomical model and visualization of human cerebrum[J]. Acta Anatomica Sinica, 2005, 36(6):638-641.
[9] 杨滨, 付峰, 董秀珍. 颅脑CT图像的自动分割和轮廓提取[C]//中国生物医学工程学会成立30周年纪念大会暨2010中国生物医学工程学会学术大会论文集. 北京:[s.n.], 2010:151-156.
[10] 孙涛. 基于特征向量的二维颅脑CT图像配准与分割[D]. 合肥:中国科学技术大学, 2009.
[11] 周平. 基于纹理特征的颅脑CT图像病变自动化检出算法研究[D]. 合肥:中国科学技术大学, 2007.
[12] 王海波. 颅脑CT图像分割算法研究[D]. 哈尔滨:哈尔滨工程大学, 2009.
[13] 于杰夫. 人工智能识别CT颅内血肿影像及脑出血混合征相关算法的研究[D]. 沈阳:中国医科大学, 2018.
[14] Ronneberger O, Fischer P, Brox T. U-net:convolutional networks for biomedical image segmentation[C]//Lecture Notes in Computer Science. Cham:Springer International Publishing, 2015:234-241.
[15] 段瑞玲, 李庆祥, 李玉和. 图像边缘检测方法研究综述[J]. 光学技术, 2005(03):415-419. Duan Ruiling, Li Qingxiang, Li Yuhe. Summary of image edge detection[J]. Optical Technique, 2005, 31(3):415-419.
[16] 马艳, 张治辉. 几种边缘检测算子的比较[J]. 工矿自动化, 2004, 30(1):54-56. Ma Yan, Zhang Zhihui. Comparison of some operators of edge detection[J]. Industry and Automation, 2004, 30(1):54-56.
[17] 唐阳山, 徐忠帅, 黄贤丞, 等. 基于Roberts算子的车道线图像的边缘检测研究[J]. 辽宁工业大学学报(自然科学版), 2017, 37(6):383-386, 390. Tang Yangshan, Xu Zhongshuai, Huang Xiancheng, et al. Research on edge detection for the lane line image based on Roberts operator[J]. Journal of Liaoning University of Technology (Natural Science Edition), 2017, 37(6):383-386, 390.
[18] 罗文村. 基于阈值法与区域生长法综合集成的图像分割法[J]. 现代计算机, 2001(5):43-46. Luo Wencun. A new image segmentation approach by integration of thresholding and regiongrowing[J]. Modern Computer, 2001(5):43-46.
[19] Arbeláez P, Maire M, Fowlkes C, et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5):898-916.
[20] Brusseau E, de Korte C L, Mastik F, et al. Fully automatic luminal contour segmentation in intracoronary ultrasound imaging-a statistical approach[J]. IEEE Transactions on Medical Imaging, 2004, 23(5):554-566.
[21] Pohle R, Toennies K D. Segmentation of medical images using adaptive region growing[C]//Medical Imaging 2001. Proc SPIE 4322, Medical Imaging 2001:Image Processing. San Diego:[s.n.], 2001:1337-1346.
[22] Cui Lingling, Zhang Hui. Study on threshold segmentation of multi-resolution 3D human brain CT image[J]. Journal of Innovative Optical Health Sciences, 2018, 11(6):1850037.
[23] Abbood A A, Sulong G, Razzaq A A A, et al. Segmentation and enhancement of fingerprint images based on automatic threshold calculations[C]//Recent Trends in Information and Communication Technology-IRICT 2017. Cham:Springer International Publishing, 2017:400-411. |