北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2017, Vol. 40 ›› Issue (1): 89-93.doi: 10.13190/j.jbupt.2017.01.016

• 研究报告 • 上一篇    下一篇

卡尔曼预测在干扰对齐中的应用

周墨淼, 李红艳, 王侃, 索龙, 马建鹏   

  1. 西安电子科技大学 通信工程学院, 西安 710071
  • 收稿日期:2016-08-23 出版日期:2017-02-28 发布日期:2017-03-14
  • 作者简介:周墨淼(1991-),男,博士,E-mail:mmzmail@163.com;李红艳(1966-),女,教授,博士生导师.
  • 基金资助:
    国家自然科学基金项目(61231008,91338115);国家科技重大专项项目(2015ZX03002006)

Kalman Filter-Based Prediction for Interference Alignment

ZHOU Mo-miao, LI Hong-yan, WANG Kan, SUO Long, MA Jian-peng   

  1. School of Telecommunications Engineering, Xidian University, Xi'an 710071, China
  • Received:2016-08-23 Online:2017-02-28 Published:2017-03-14

摘要: 分析了K用户干扰信道中,收发端的噪声和信道的时变特性对干扰对齐实际性能的影响,并提出一种基于卡尔曼预测的信道状态信息修正方法,以改善干扰对齐的性能。该方法利用信道的时域相关特性对信道增益进行跟踪预测,并通过预测值对估计值进行修正,从而提高发送端获取信道状态信息的精度。仿真结果表明,所提出的修正方法降低了信道增益估计值的均方误差,有效地改善了干扰对齐的性能,提升了系统的和速率。

关键词: 干扰对齐, 信道状态信息, 预测, 和速率

Abstract: The impacts of both noise and time-variation of channels on interference alignment in the K-user interference channel were analyzed. To revise the channel state information at transmitters, a Kalman filter-based algorithm was proposed. First, tracking prediction on channel coefficients is made based on the temporal correlation between them. Then, by combining the estimated value and the predicted value, a more accurate value of channel gain is obtained. Simulations reveal that the proposed algorithm can reduce the mean square error of channel estimations and thus improve the sum-rate of the system.

Key words: interference alignment, channel state information, predicting, sum-rate

中图分类号: