北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2016, Vol. 39 ›› Issue (s1): 81-86.doi: 10.13190/j.jbupt.2016.s.019

• 论文 • 上一篇    下一篇

车辆图像稀疏特征表示及其监控视频应用

陈湘军1,2, 阮雅端1, 陈启美1, 叶飞跃2   

  1. 1. 南京大学 电子科学与工程学院, 南京 210046;
    2. 江苏理工学院 计算机工程学院, 江苏 常州 213001
  • 收稿日期:2015-09-06 出版日期:2016-06-28 发布日期:2016-06-28
  • 作者简介:陈湘军(1977-),男,博士生,E-mail:xiangba@21cn.com;陈启美(1949-),男,教授,博士生导师.
  • 基金资助:

    国家自然科学基金项目(61472166,61105015);江苏省科技厅项目(BE2011747);常州市应用基础研究基金项目(CJ20120021)

Sparse Representation of Vehicle Image and Its' Application in Surveillance Video

CHEN Xiang-jun1,2, RUAN Ya-duan1, CHEN Qi-mei1, YE Fei-yue2   

  1. 1. School of Electronic Science and Engineering, Nanjing University, Nanjing 210046, China;
    2. School of Computer Engineering, Jiangsu University of Technology, Jiangsu Changzhou 213001, China
  • Received:2015-09-06 Online:2016-06-28 Published:2016-06-28

摘要:

针对传统车辆图像特征在复杂场景下响鲁棒性和泛化能力低的问题,提出了车辆图像稀疏特征表示方法,并实现了基于稀疏特征的车辆图像支持向量机线性分类器,构建了基于稀疏特征和背景建模的监控车辆分类识别应用框架.与传统方法相比,该方法将车辆图像表示成字典集的低维稀疏线性组合,提高了特征表示泛化能力,能适应实时性监控视频分析的需求.实验结果表明,基于稀疏特征的车辆识别准确率比传统方法明显提升,并在低分辨率、阴影、遮挡等复杂场景下有较好的鲁棒性.

关键词: 特征表示, 稀疏学习, 车辆分类与识别, 鲁棒性与泛化性, 智能交通系统

Abstract:

Typical vehicle image feature will lost robustness and generalization ability under complex scene. To deal with this problem, sparse based vehicle images feature representation was introduced and a linear vehicles support vector machine classifier based on the sparse representation was proposed. Then, a framework of vehicle classification and recognition on surveillance video was constructed based on the background subtraction and sparse represented feature. Compared with traditional methods, vehicle images are represented as linear combination of the sparse coefficient of a learned dictionary (atom or base) in low dimension in our method, and sparse represented feature gains higher generalization capability with less computational complexity. Experiment shows that this work exhibits better classification accuracy and robustness under complex real environment with decrease image quality of low resolution, shadow and occlusion.

Key words: feature representation, sparse learning, vehicle classification and recognition, robustness and generalization, intelligent transportation system

中图分类号: