北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2016, Vol. 39 ›› Issue (2): 73-76,87.doi: 10.13190/j.jbupt.2016.02.015

• 研究报告 • 上一篇    下一篇

基于遗传算法优化的稀疏表示图像融合算法

赵学军, 李育珍, 雷书彧   

  1. 中国矿业大学(北京)机电与信息工程学院, 北京 100083
  • 收稿日期:2015-05-29 出版日期:2016-04-28 发布日期:2016-04-28
  • 作者简介:赵学军(1962-),女,副教授,E-mail:zhxj20120219@163.com.
  • 基金资助:

    国家高技术研究发展计划(863计划)项目(2012AA12A308,1212011120222)

An Image Fusion Method with Sparse Representation Based on Genetic Algorithm Optimization

ZHAO Xue-jun, LI Yu-zhen, LEI Shu-yu   

  1. School of Mechanical Electronic and Information Engineering, China University of Mining and Technology, Beijing 100083, China
  • Received:2015-05-29 Online:2016-04-28 Published:2016-04-28

摘要:

关于稀疏表示理论的图像融合主要是利用加权系数方法来确定稀疏系数的融合规则,通过遗传算法求解最优加权系数,实现全色图像和多光谱图像的融合.所提算法与Contourlet变换、主成分分析算法和高通滤波等遥感图像融合算法相比,在提高图像清晰度的同时,光谱保真度相对较高.

关键词: 遗传算法, 稀疏表示, 图像融合

Abstract:

Due to sparse nature of the nature of image, the sparse signal representation theory can be well used in image processing, and with sparse representation theory of continuous improvement, it is also widely used in image de-noising rehabilitation and integration process. The sparse representation of image fusion theory was used to determine the weighting factor fusion rules sparse coefficients, and to solve the optimal weighting coefficients of genetic algorithm to achieve image fusion panchromatic, multispectral images, contourlet transform, principal component analysis (PCA) algorithm and the high-pass filter image fusion algorithm. Also it improves the image clarity spectral fidelity compared to other algorithms.

Key words: genetic algorithms, sparse representation, image fusion

中图分类号: