北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2014, Vol. 37 ›› Issue (5): 80-84.doi: 10.13190/j.jbupt.2014.05.017

• 研究报告 • 上一篇    下一篇

融合多特征的符号网络连边符号预测

张维玉1,2, 吴斌1, 刘旸1   

  1. 1. 北京邮电大学 计算机学院, 北京 100876;
    2. 齐鲁工业大学 信息学院, 济南 250353
  • 收稿日期:2014-01-20 出版日期:2014-10-28 发布日期:2014-11-07
  • 作者简介:张维玉(1978- ), 男, 博士生, E-mail: zwy@bupt.edu.cn;吴 斌(1969- ), 男, 教授, 博士生导师.
  • 基金资助:

    国家重点基础研究发展计划项目(2013CB329603);国家自然科学基金项目(71231002,61375058)

Integrating Multi-Feature for Link Sign Prediction in Signed Networks

ZHANG Wei-yu1,2, WU Bin1, LIU Yang1   

  1. 1. School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. School of Information, Qilu University of Technology, Jinan 250353, China
  • Received:2014-01-20 Online:2014-10-28 Published:2014-11-07

摘要:

为提高符号网络的连边符号预测准确率,深入分析了影响连边符号的各项基本机理,拓展了"结构平衡理论"和"地位理论",同时将网页网络中的"PageTrust"度量引入符号网络用以刻画符号网络中节点的重要性. 在融合从不同角度反映连边符号形成机制理论的基础上,抽取出一组最能反映连边正负的网络特征,并将这类网络特征用于2类机器学习模型的训练与测试. 2个真实网络数据集上的实验结果表明,训练所得模型具有较已有模型更高的预测准确率和更好的通用性.

关键词: 符号网络, 连边符号预测, 社交网络分析, 结构平衡理论

Abstract:

In order to make the link sign prediction more accurate in signed networks, it is necessary to analyse each underlying principle of generating signed networks. Structure balance theory and status theory are extended to gain more information for link sign prediction. A new measurement named PageTrust in web network is introduced to describe the importance of node of signed networks. On the basis of integrating different kind principles of generating signed networks, a group of refined features are extracted. Based on those creative features, two link sign predictors using supervised machine learning algorithms are established. Experimental results on two real signed networks demonstrate that learned model is more accurate and generalized than other state-of-the-art methods.

Key words: signed networks, link sign prediction, social network analysis, structure balance theory

中图分类号: