北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2014, Vol. 37 ›› Issue (5): 75-79.doi: 10.13190/j.jbupt.2014.05.016

• 研究报告 • 上一篇    下一篇

一种新的3容错扩展RAID码

万武南1,2, 杨威1, 陈运2   

  1. 1. 成都信息工程学院 信息安全工程学院, 成都 610225;
    2. 成都信息工程学院 应用密码学研究所, 成都 610225
  • 收稿日期:2014-01-21 出版日期:2014-10-28 发布日期:2014-11-07
  • 作者简介:万武南(1978- ), 女, 副教授,博士, E-mail: nan_wwn@cuit.edu.cn.
  • 基金资助:

    国家自然科学基金项目(60873216);四川省教育厅重点项目(12ZA223)

A Toleration Based Extended RAID Code Triple Failures

WAN Wu-nan1,2, YANG Wei1, CHEN Yun2   

  1. 1. College of Information Security Engineering, Chengdu University of Information Technology, Chengdu 610225, China;
    2. Institute of Applied Cryptography, Chengdu University of Information Technology, Chengdu 610225, China
  • Received:2014-01-21 Online:2014-10-28 Published:2014-11-07

摘要:

随着存储系统规模的扩大,如何提高存储系统可靠性成为一个必须解决的问题. 目前的双容错独立冗余磁盘阵列(RAID)码已经无法满足存储系统可靠性要求. 在双容错行对角奇偶校验(RDP)码的基础上,提出了一种编码冗余率和纠错能力达到编码最优的新的扩展RDP-RAID码,可以允许任意3磁盘同时故障,并给出了一种基于二元矩阵变换的简单和直观的译码算法. 与STAT码和EEOD码相比,扩展RDP-RAID码的编译码复杂度、更新复杂度、存储效率的综合性能可达到最优,存储可靠性高.

关键词: 独立冗余磁盘阵列编码, 阵列码, 行对角奇偶校验码, 纠删码

Abstract:

As the storage system grows, how to improve the system reliability has become a key issue to the storage system. The redundant array of independent disk (RAID) codes of tolerating double failures can not meet the requirement of reliability in storage system. On the basis of the row diagonal parity (RDP) code for double toleration failures, a new class of extended RDP-RAID code for triple storage failures was presented. The three nodes failure recovery capability for a given data redundancy were optimal. The simple and intuitive algorithms of encoding and decoding were proposed by using binary matrix transformation. Analysis shows that the comprehensive properties of the proposed code are better than the STAT code and the EEOD code, such as update complexity, encoding and decoding complexity, storage efficiency. And it shows high reliability for storage systems.

Key words: redundant array of independent disk code, array code, row diagonal parity code, erasure code

中图分类号: