北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2013, Vol. 36 ›› Issue (3): 108-112.doi: 10.13190/jbupt.201303.111.004

• 研究报告 • 上一篇    下一篇

空间五杆RCRCR机构的位移分析

庄育锋1, 王品2   

  1. 1. 北京邮电大学 自动化学院, 北京 100876;
    2. 鲁东大学 交通学院, 山东 烟台 264025
  • 收稿日期:2012-09-27 出版日期:2013-06-30 发布日期:2013-06-30
  • 作者简介:庄育锋(1972—), 男, 副教授, 硕士生导师, E-mail: zhuangyf@bupt.edu.cn.
  • 基金资助:

    山东省自然科学基金项目(ZR2010EL022)

Analysis on the Displacement Mechanism of Spatial Five-Link RCRCR

ZHUANG Yu-feng1, WANG Pin2   

  1. 1. Automation School, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. School of Transport, Ludong University, Shandong Yantai 264025, China
  • Received:2012-09-27 Online:2013-06-30 Published:2013-06-30

摘要:

为了对空间五杆RCRCR机构的位移分析进行研究,采用对偶数矩阵进行数学建模,建立封闭方程. 首先引入3×3酉交矩阵和欧拉公式,使部分对偶矩阵对角化;然后寻找关系式,分解对偶数的初级部和对偶部, 通过符号计算,导出一元四次输入输出方程;最后求出其余变量. 数字实例验证结果表明,空间五杆RCRCR机构的位移分析的解析解的个数是4,方法是正确的.

关键词: RCRCR机构, 位移分析, 对偶矩阵, 酉交矩阵, 欧拉公式

Abstract:

To study the displacement mechanism of the spatial five-link RCRCR, dual-number matrices are adopt to set up mathematic model and close-form equation. Firstly, 3×3 unitary matrix and Euler formula are introduced to make some dual-number matrices diagonalizable, then, to find relationships, the primary part and dual part are decomposed to derive a 4th degree input-output polynomial equation with a single unknown by symbolic computation. At last, other middle variables are solved. Numerical example confirms that the numbers of analytical solutions for five-link RCRCR mechanism are 4.

Key words: RCRCR mechanism, displacement analysis, dual-number matrices, unitary matrix, Euler formula

中图分类号: