北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2018, Vol. 41 ›› Issue (6): 52-57,64.doi: 10.13190/j.jbupt.2018-072

• 论文 • 上一篇    下一篇

改进的灰色神经网络预测方法

许同乐1, 王营博2, 孟祥川1, 宋汝君1   

  1. 1. 山东理工大学 机械工程学院, 淄博 255000;
    2. 北京理工大学 光电学院, 北京 100081
  • 收稿日期:2018-04-20 出版日期:2018-12-28 发布日期:2018-12-24
  • 作者简介:许同乐(1965-),男,教授,博士生导师,E-meil:xutongle@163.com.
  • 基金资助:
    国家自然科学基金青年基金项目(51705296);山东省自然科学基金博士基金项目(ZR2017BEE039)

Improved Grey Neural Networks Prediction Method

XU Tong-le1, WANG Ying-bo2, MENG Xiang-chuan1, SONG Ru-jun1   

  1. 1. College of Mechanical Engineering, Shandong University of Technology, Shandong Zibo 255000, China;
    2. College of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China
  • Received:2018-04-20 Online:2018-12-28 Published:2018-12-24

摘要: 针对GM(1,1)算法求解发展系数和灰色作用量时受背景值影响的问题,提出一种回避背景值的辨识参数求解方法,避开背景值试算选取的步骤或选取不当造成预测精度低的问题;针对GM(1,1)模型预测时初始条件为固定值影响预测精度的问题,提出一种构建变权初始值的方法,避免预测精度受固定初始值的影响;针对传统灰色神经网络样本类型单一的问题,提出一种新的组合预测模型结构,突破了传统模型只依靠单一浸润线历史数据预测的局限,建立了基于改进灰色神经网络的浸润线预测模型.通过工程验证,该模型短期内对浸润线高度的变化预测效果较好.

关键词: 浸润线预测, 灰色神经网络, 欧拉公式, 组合预测模型

Abstract: During the process of calculation, the problem of GM(1,1) algorithm that used to solve the development factor and the gray affections can be influenced by the background value. The identifying parameters method of avoiding background value was proposed for calculation. The problem of low prediction accuracy caused by the background value of the selected steps or improper selection was solved. The problem of initial condition with fixed value can affect the prediction accuracy when using the GM(1,1) model predicts. The method of constructing the initial value with the variable weight was proposed. The impacts of the fixed initial value to the prediction accuracy was avoided. Aiming at the problem of single sample type of traditional grey neural network, a new combination forecasting model was proposed. To tackle the limitation of the traditional model to predict saturation line only rely on the data of history single sample type, and the prediction model of saturation line based on improving grey neural network is established. Through engineering verification, it is shown that the model effectively predict the change of the saturation line height in the short term.

Key words: saturation line prediction, grey neural network, Euler's formula, combination prediction model

中图分类号: