北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2025, Vol. 48 ›› Issue (2): 46-53.

• 论文 • 上一篇    下一篇

基于多尺度特征提取及域迁移优化的去雾网络

杨燕, 景嘉杰   

  1. 兰州交通大学 电子与信息工程学院
  • 收稿日期:2024-02-29 修回日期:2024-05-15 出版日期:2025-04-30 发布日期:2025-04-30
  • 通讯作者: 杨燕 E-mail:yangyantd@mail.lzjtu.cn
  • 基金资助:
    甘肃省产业支撑计划项目

Dehazing Network based on Multi-Scale Feature Extraction and Domain Transfer Optimization

#br#   


  • Received:2024-02-29 Revised:2024-05-15 Online:2025-04-30 Published:2025-04-30

摘要: 针对目前去雾算法存在对非均匀雾图处理效果不佳和小规模训练集容易造成过拟合的问题,提出了一种基于多尺度特征提取及域迁移优化的双分支去雾网络。多尺度特征提取分支用于学习从有雾图像到清晰图像的颜色和结构映射,利用多尺度残差密集模块实现基于通道注意力的多尺度估计;域迁移分支引入预训练的ConvNeXt,使得模型获得额外的先验信息,提高模型的泛化能力。实验结果表明,所提算法在合成数据集和真实数据集上去雾理想,具有良好的去除非均匀雾霾性能,泛化能力优越。同时,在客观评价指标峰值信噪比(PSNR)和结构相似 性函数(SSIM)中也取得了满意的结果。

关键词: 图像去雾, 多尺度提取, 域迁移, 通道注意力

Abstract: To address the issues of ineffective treatment of non-uniform haze and susceptibility to overfitting due to small-scale training sets in current dehazing algorithms, a dual-branch dehazing network based on multi-scale feature extraction and domain transfer optimization is proposed. The multi-scale feature extraction branch is utilized to learn the color and structure mapping from hazy images to clear ones, the multi-scale estimation based on channel attention is achieved through a multi-scale residual dense module. The domain transfer branch introduces pre-trained ConvNeXt, which enables the model to obtain additional prior information and improve its generalization ability. The experimental results demonstrate the effectiveness of the proposed algorithm in dehazing on both synthetic and real datasets. The proposed algorithm not only has good performance in removing non-uniform haze, but also has superior generalization ability. Moreover, it has achieved satisfactory results in objective evaluation indicators peak signal-to-noise ratio (PSNR) and structure similarity index measure (SSIM).

Key words: image dehazing, multi-scale extraction, domain transfer, channel attention

中图分类号: