北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2025, Vol. 48 ›› Issue (2): 151-158.

• 研究报告 • 上一篇    

一种多策略改进的浣熊优化算法

高猛, 曾宪文, 李靖超
  

  1. 上海电机学院 电子信息学院
  • 收稿日期:2024-01-18 修回日期:2024-03-24 出版日期:2025-04-30 发布日期:2025-04-30
  • 通讯作者: 曾宪文 E-mail:zengxw@sdju.edu.cn
  • 基金资助:
    国家自然科学基金项目; 上海市自然科学基金面上项目; 上海市“科技创新行动计划"启明星项目

A Multi-Strategy Improved Coati Optimization Algorithm

  • Received:2024-01-18 Revised:2024-03-24 Online:2025-04-30 Published:2025-04-30

摘要: 针对浣熊优化算法收敛速度慢、寻优精度差、容易陷入局部最优解的问题,提出基于多策略改进的浣熊优化算法。引入折射反向学习初始化浣熊种群,保证种群分布的多样性和均匀遍历性,提升算法的收敛速度和寻优精度;引入Levy飞行策略改进浣熊优化算法的勘探阶段,增强算法跳出局部最优解的能力;受到鲸鱼优化算法的启发,引入螺旋搜索机制优化算法的开发阶段,增强算法的全局搜索能力和局部探索能力;引入自适应t分布变异迭代方法,平衡算法的全局搜索能力和局部开发能力。在12个标准测试函数上,与多种智能算法进行对比,验证了算法良好的优化性能。为进一步评估改进算法的有效性,将其用于极限梯度提升模型参数的优化,实验结果表明,相比于其他5种算法,改进的算法具有更高的分类精度和收敛速度。

关键词: 浣熊优化算法, Levy飞行策略, 螺旋搜索机制, 折射反向学习, 自适应t分布变异

Abstract: Aiming at the problems of slow convergence speed, poor optimization accuracy and easy to fall into local optimal solution of the coati optimization algorithm, a multi-strategy improved coati optimization algorithm is proposed. Refraction reverse learning is introduced to initialize the coati population, which ensures the diversity and uniform ergodicity of the population distribution, and improves the convergence speed and optimization accuracy of the algorithm. The Levy flight strategy is introduced to improve the exploration phase of the coati optimization algorithm, which enhances the ability of the algorithm to jump out of local optimal solution. Inspired by the whale optimization algorithm, the spiral search mechanism is introduced into the development stage of the optimization algorithm, which enhances the global search capability and local exploration capability of the algorithm. The adaptive t-distribution mutation iteration method is introduced, which balances the global search capability and local development capability of the algorithm. Comparing with various intelligent algorithms, the good performance of the improved algorithm is verified through 12 multi-type test functions. In order to further evaluate the effectiveness of the improved algorithm, it is used for the optimization of extreme gradient boosting model parameters. The experimental results show that compared with the other five algorithms, the improved algorithm has higher classification accuracy and convergence speed.

Key words: coati optimization algorithm, Levy flight strategy, spiral search mechanism, refraction reverse learning, adaptive t distribution mutation

中图分类号: