北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2025, Vol. 48 ›› Issue (2): 133-143.

• 研究报告 • 上一篇    下一篇

面向NOMA-MEC系统的异构计算能效优化策略研究

佘蕊, 崔恩放, 武宇亭, 黄志兰
  

  1. 中国电信股份有限公司 北京研究院
  • 收稿日期:2024-01-11 修回日期:2024-05-06 出版日期:2025-04-30 发布日期:2025-04-30
  • 通讯作者: 佘蕊 E-mail:sher@chinatelecom.cn
  • 基金资助:
    国家重点研发计划项目

Research on Heterogeneous Computing Energy Efficiency Optimization Strategy for NOMA-MEC System

  • Received:2024-01-11 Revised:2024-05-06 Online:2025-04-30 Published:2025-04-30

摘要: 随着生成式人工智能技术的快速发展,边缘机器学习逐渐成为关键趋势,旨在利用边缘设备上的数据进行模型训练,以减少延迟并提升用户体验。然而,由于边缘设备的能源和资源限制,特别是在执行高能耗的学习任务上,提升边缘设备能源效率成为当前主要挑战。笔者提出了一种基于异构计算的边缘能效优化模型,本地计算侧配置中央处理器和神经网路处理器 (CPU-NPU) ,异构计算单元通过CPU和NPU间任务合理分配以提升承载能力和能源利用率,传输侧通过非正交多址传输方式实现从边缘设备到服务器的任务卸载以提升频谱和能源效率。同时,为了最大限度地提升边缘设备能源效率,提出了一种联合计算与通信资源管理优化策略,基于联合优化算法对本地异构计算任务分配、传输功率分配因子、任务卸载延时等涉及计算和通信侧的单目标能效最优解进行联合优化,以最大化边缘设备整体能效。仿真结果表明,与传统CPU单一计算节点相比,所提方案在提高频谱资源利用率的同时,物联网 (IOT) 边缘用户设备能源效率也提升30%。

关键词: 异构计算, 任务卸载, 边缘计算, 能源效率

Abstract: With the rapid development of generative artificial intelligence technology, edge machine learning has gradually become a key trend, aiming to use data on edge devices for model training to reduce latency and improve user experience. However, due to the energy and resource limitations of edge devices, especially in executing high-energy learning tasks, improving the energy efficiency of edge devices has become the main challenge at present. This paper proposes an edge energy efficiency optimization model based on heterogeneous computing. On the local computing side, central processing unit and neural network processing unit (CPU-NPU) heterogeneous computing units are configured to reasonably allocate tasks between CPU and NPU to improve carrying capacity and energy utilization. On the transmission side, non orthogonal multiple access transmission is used to offload tasks from edge devices to servers to improve spectrum and energy efficiency. At the same time, in order to maximize the energy efficiency of edge devices, a joint computing and communication resource management optimization strategy is proposed. Based on the joint optimization algorithm, the single objective energy efficiency optimal solution for local heterogeneous computing task allocation, transmission power allocation factor, task offloading delay involving computing and communication sides is jointly optimized to maximize the overall energy efficiency of edge devices. The simulation results show that compared with traditional CPU single computing nodes, the proposed scheme improves spectrum resource utilization while also improving the energy efficiency of Internet of things (IOT) edge user devices by 30%.

Key words: heterogeneous computing, task unloading, edge computing, energy efficiency

中图分类号: