北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2024, Vol. 47 ›› Issue (3): 55-61.

• • 上一篇    下一篇

基于合作博弈及深度学习的节点协作缓存机制

金宁,周文倩,周旭颖,金小萍   

  1. 中国计量大学 信息工程学院
  • 收稿日期:2023-04-25 修回日期:2023-06-11 出版日期:2024-06-30 发布日期:2024-06-13
  • 通讯作者: 周旭颖 E-mail:xuyingzhou@cjlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(62201539); 中国计量大学基本科研业务费项目(2022YW61)

Collaborative caching mechanism of nodes based on cooperative game and deep learning

  • Received:2023-04-25 Revised:2023-06-11 Online:2024-06-30 Published:2024-06-13

摘要: 随着无线移动通信的不断发展, 用户激增的内容需求与有限无线网络资源之间的矛盾日益加剧。利用设备到设备(device-to-device, D2D)通信实现边缘节点间缓存内容的共享, 可以改善用户体验质量并减轻核心网络的流量负担。针对节点缓存空间受限的场景, 考虑交互成本及个体理性等因素将协作缓存问题建模成合作博弈, 实现系统效用的优化。根据节点间效用是否可转移, 分类讨论两种情况下的合作博弈:在效用可转移(Transferable Utility, TU)博弈下, 推导出节点形成稳定大联盟的条件;在效用不可转移(Non-Transferable Utility, NTU)博弈下, 考虑到理性节点无法确保形成稳定的大联盟,且联盟的数量随用户数剧增。因此,提出一种基于深度强化学习的联盟形成算法在有限时间内保证节点间稳定联盟的形成。理论分析和仿真结果表明, 所提出的联盟形成算法能收敛于纳什稳定最优解或者渐进最优解, 性能上优于其他对比算法。

关键词: 节点协作, 内容共享, 合作博弈, 深度强化学习

Abstract: With the development of wireless mobile communication, the contradiction between users' proliferating content demands and the limited wireless network resources is increasing. The use of Device-to-Device (D2D) communication to realize the sharing of cached contents between edge nodes can improve user experience and reduce the burden of traffic on the core network. This paper models the collaboration caching problem as a cooperative game considering the factors of interaction costs and individual rationality to optimize the system utility with limited cache space. According to whether the utility between nodes can be transferred, we discuss the cooperative game in two cases. Under the transferable utility (TU) game, the conditions for nodes to form a stable grand coalition are derived, and it is proved that the coalition has the nature of nuclear nonempty when the coalition cost of nodes satisfy certain conditions. For non-transferable utility (NTU) game, the rational nodes cannot ensure the formation of a stable grand coalition, and the number of formable coalitions increases dramatically with the number of users. Therefore, a deep reinforcement learning-based coalition formation algorithm is proposed to ensure the formation of stable coalitions within a limited time. Theoretical analysis and simulation results show that the proposed algorithm can converge to a Nash-stable optimal solution or asymptotically optimal solution, which outperforms other comparison algorithms.

Key words: node collaboration, content sharing, cooperative game, deep reinforcement learning

中图分类号: