北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2024, Vol. 47 ›› Issue (3): 42-47.

• • 上一篇    下一篇

DuC-GAN:增强GAN训练稳定性的新模型

韩诗阳,张重生   

  1. 河南大学 计算机与信息工程学院
  • 收稿日期:2023-03-09 修回日期:2023-09-08 出版日期:2024-06-30 发布日期:2024-06-13
  • 通讯作者: 张重生 E-mail:cszhang@henu.edu.cn

DuC-GAN:A Novel Model for Enhancing GAN Training Stability

  • Received:2023-03-09 Revised:2023-09-08 Online:2024-06-30 Published:2024-06-13

摘要: 针对生成对抗网络(GAN)训练不稳定的问题,提出了一种新的增强稳定性的模型——双循环GAN(Dual-Cycle GAN,DUC-GAN)。 该模型通过在生成器和判别器之间添加额外的循环来解决GAN训练中的不稳定性问题。新循环由一个冻结的主判别器和一个辅助判别器组成,它们与生成器一起进行训练,并以生成器的性能作为切换循环的指标。在多个数据集上的测试表明,相比现有方法,该框架显著提高了GAN的性能和训练稳定性。双循环GAN实现了更快的收敛速度和更好的生成效果。此框架适用于其他GAN变体,并有望成为未来GAN研究的重要工具。

关键词: 生成对抗网络, 双循环结构, 训练稳定性, 模式崩溃

Abstract: This paper proposes a new framework, called "Dual-Cycle GAN(DUC-GAN)" to enhance the stability of training in generative adversarial networks (GAN). The framework addresses the issue of training instability in GAN by introducing an additional cycle between the generator and discriminator. This new cycle is composed of a frozen original discriminator and a new discriminator, both of which are trained together with the generator and switched based on the generator's performance. Testing on multiple datasets has shown that the proposed framework significantly improves the performance and training stability of GAN compared to existing methods, achieving faster convergence and better generation quality. The framework is also applicable to other GAN variants and is expected to become an important tool for future GAN research.

Key words: generative adversarial networks, dual-cycle structure, training stability, mode collapse

中图分类号: