北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2024, Vol. 47 ›› Issue (3): 103-110.

• • 上一篇    下一篇

一种用于学习不变表示的深度神经网络结构

张晗   

  1. 东北财经大学 数据科学与人工智能学院
  • 收稿日期:2023-06-28 修回日期:2023-09-25 出版日期:2024-06-30 发布日期:2024-06-13
  • 通讯作者: 张晗 E-mail:hanzhang@dufe.edu.cn
  • 基金资助:
    辽宁省应用基础研究计划项目(2023JH2/101600040); 辽宁省教育厅基本科研项目(LJKMZ20221598); 国家自然科学基金项目(72273019)

A Neural Network Architecture for Learning Invariant Representations

  • Received:2023-06-28 Revised:2023-09-25 Online:2024-06-30 Published:2024-06-13

摘要: 数据中存在扭曲是指不同的输入特征向量可能表示相同的实体,该问题是机器学习领域存在已久的困难之一。对上述问题的研究促进了不变机器学习中诸如能够忽略图像中的平移、旋转、光照和姿态变化等方法的发展。这些方法通常使用预定义的不变特征或不变核,并且需要设计者仔细分析数据中可能存在的扭曲的类型。对于图像数据来说,我们很容易发现其可能存在的扭曲的类型,但对于其它领域的数据却比较困难。本文的目标是在任何关于非图像数据中扭曲的类型的信息都未知的情况下,只基于任意两个样本是否为同一实体的扭曲变体的信息,从数据中学习不变表示。理论上,给定足够多的样本,标准的神经网络结构应该能从数据中学习不变性。实际中,我们通过实验发现,标准的神经网络即使学习去近似一个简单类型的不变表示都是困难的。因此,本文提出一个新的扩展层,其具有更丰富的输出表示,更适合从数据中学习不变表示。

关键词: 时间序列, 平移不变性, 神经网络, 自编码器, 扩展层

Abstract: The presence of distortions in data refers to the fact that different input feature vectors may represent the same entity, which is one of the long-standing difficulties in machine learning. The study of the above problem has spurred the development of invariant machine learning methods with the abilities such as ignoring translation, rotation, illumination, and pose changes in images, which typically use pre -defined invariant features or invariant kernels, and require the designers to carefully analyze the types of distortions that may exist in the data. While it is straightforward to discover the possible types of distortions in image data, it is difficult in other domains. Our goal is to learn invariant representations from non-image data based only on information about whether any two samples are distorted variants of the same entity, without any information of what the distortions present in the data. In theory, given a sufficiently large number of samples, standard neural network architectures should be capable of learning invariance from data. In practice, we experimentally find that standard neural networks are struggling to learn to approximate even simple type of invariant representation. Therefore, we propose a new extended layer with richer output representations that is better suited for learning invariance from data.

Key words: time series, translation invariance, neural networks, auto鄄encoders, extended layer

中图分类号: