北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2023, Vol. 46 ›› Issue (5): 60-65.

• 论文 • 上一篇    下一篇

一种基于DQN的全景视频边缘缓存优化方案

杨树杰1,方楚星1,郝昊2,蒋可1   

  1. 1. 北京邮电大学
    2. 齐鲁工业大学(山东省科学院)
  • 收稿日期:2022-09-14 修回日期:2022-11-08 出版日期:2023-10-28 发布日期:2023-11-03
  • 通讯作者: 郝昊 E-mail:haoh@sdas.org

An Optimization Scheme of Edge Caching for Panorama Video based on DQN

  • Received:2022-09-14 Revised:2022-11-08 Online:2023-10-28 Published:2023-11-03

摘要: 为了解决全景视频服务中云服务器和边缘服务器的联合边缘缓存问题,优化边缘缓存机制以降低用户获取视频资源的时延,提出用DQN进行深度强化学习以生成视频资源缓存策略的方法。首先,以总节约时间为目标将问题建模成马尔可夫决策过程;其次,使用DQN算法进行训练,在迭代中获取最优缓存策略。仿真结果表明,DQN算法具有较高的收敛速度和最优的性能,且在约束条件改变时能主动变换调整边缘缓存策略使得算法性能稳定上升。

关键词: 边缘计算, 深度强化学习, 缓存策略, 全景视频

Abstract: To solve the edge caching problem of cloud server and edge server in panorama video service, optimizing the edge caching mechanism to reduce the time delay for obtaining video resources, a method of generating cache strategy by using DQN as deep reinforcement learning algorithm is proposed. First, the problem is modeled as Markov decision process with the goal of total time saving. Then, DQN algorithm is used for training to obtain the best cache strategy in the iteration. Simulation shows that DQN algorithm has high convergence speed and the best performance. And when the constraints change, it can actively change the edge caching strategy to stably improve the performance of the algorithm.

Key words: edge computing, deep reinforcement learning, cache strategy, panorama video

中图分类号: