北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2023, Vol. 46 ›› Issue (5): 125-131.

• 研究报告 • 上一篇    下一篇

本体和深度学习融合的在线评论细粒度情感分析

翟夏普,安源,龙艺璇   

  1. 中国铁道科学研究院集团有限公司科学技术信息所
  • 收稿日期:2022-09-14 修回日期:2022-12-01 出版日期:2023-10-28 发布日期:2023-11-03
  • 通讯作者: 翟夏普 E-mail:zhaixiapu@126.com

Fine-grained emotion analysis of online comments based on the fusion of ontology and deep learning

  • Received:2022-09-14 Revised:2022-12-01 Online:2023-10-28 Published:2023-11-03

摘要: 细粒度情感分析透过文本从评价对象及其属性的角度出发分析作者情感倾向,其主要任务包括评价对象及其属性的识别(主题识别)和情感识别两部分。针对以往研究中细粒度情感识别效果欠佳,深度学习方法可解释性差等问题,提出将本体与深度学习融合的细粒度情感分析模型,该模型使用领域本体和CNN融合方法识别显式与隐式主题,将情感词典和Bi-LSTM+Attention模型相结合识别在线评论文本的细粒度情感。实验结果表明,提出的细粒度情感分析方法相比于其他方法在准确率、召回率、F值上均具有一定的优势。

关键词: 深度学习, 本体, 细粒度情感分析, 在线评论

Abstract: Fine grained emotion analysis analyzes the author's emotional tendency from the perspective of the evaluation object and its attributes through the text. Its main tasks include the recognition of the evaluation object and its attributes (topic recognition) and emotion recognition. To solve the problems of poor fine grained emotion recognition and poor interpretability of deep learning methods in previous studies, a fine-grained emotion analysis model integrating ontology and deep learning is proposed. The model uses domain ontology and CNN fusion methods to identify explicit and implicit topics, and combines emotion dictionary and Bi LSTM+Attention model to identify fine-grained emotions of online comment texts. The experimental results show that the proposed fine-grained sentiment analysis method has advantages over other methods in accuracy, recall and F value.

Key words: Deep learning, Ontology, Fine-grained emotion analysis, Online comments

中图分类号: