北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2023, Vol. 46 ›› Issue (4): 83-90.

• 论文 • 上一篇    下一篇

融合重构和对比的多维时间序列表示学习模型

霍纬纲1, 孟璐1, 郭润夏2   

  1. 1.中国民航大学 计算机科学与技术学院; 2. 中国民航大学 发展规划与学科建设处
  • 收稿日期:2022-07-26 修回日期:2022-09-03 出版日期:2023-08-28 发布日期:2023-08-24
  • 通讯作者: 霍纬纲 Huo Weigang E-mail: wghuo@ cauc. edu. cn
  • 基金资助:
    国家自然科学基金项目; 中央高校基本科研业务费专项项目

The Method of Multivariable Time Series Representation Learning Combining Reconstruction with Contrasting

HUO Weigang1, MENG Lu1, GUO Runxia2   

  • Received:2022-07-26 Revised:2022-09-03 Online:2023-08-28 Published:2023-08-24
  • Contact: 霍纬纲 HuoWeigang E-mail: wghuo@ cauc. edu. cn

摘要: 已有的多维时间序列(MTS)自监督表示学习模型无法同时捕获单个样本的时空耦合特征和样本间的不变性判别特征为此设计了一种融合重构和对比的 MTS 表示学习模型( MTS-RC),该模型首先通过二进制噪声掩码方式对 MTS 样本进行数据增强,然后采用膨胀卷积和Transformer 编码器分别提取 MTS 及其增强样本的局部上下文特征和局部上下文之间的长时依赖特征,最后由重构增强样本的掩码值捕获单个 MTS 样本的时空耦合特征,通过对比学习捕获 MTS 样本间的不变性判别特征在多个 MTS 公开数据集上的分类实验结果表明,MTS-RC 所得表示向量训练的分类器准确率优于典型基线模型消融实验结果也表明,所提模型中重构模块与对比模块相融合的设计能提高 MTS 表示向量的质量

关键词: 多维时间序列表示学习, 自监督学习, 重构, 对比学习

Abstract: The spatiotemporal coupling features of a single multivariate time series(MTS) sample and the invariant discriminative features between the MTS samples can not be simultaneously captured by most of the existing self-supervised representation learning models for MTS. To this end, the MTS representation learning model combining reconstruction with contrasting ( MTS-RC ) is proposed. First, the MTS samples are augmented through binary noise masks, and then the local context features of the MTS and its augmented samples and long-term time-dependent relationship of local context features are respectively extracted by dilated convolution and transformer encoder. Finally, the spatiotemporal coupling characteristics of a single MTS sample are captured by reconstructing the mask value of augmented samples, and the MTS invariant discriminative characteristics are extracted between samples by contrastive learning. Experiments on classification on multiple MTS public datasets show that the classification accuracy of the classifier trained by the representation vector obtained from the MTS-RC outperforms typical baseline models. The results of ablation experiments show that the quality of MTS representation vector can be improved by the combined design of reconstruction and contrasting.

Key words: multivariate time series representation learning, self-supervised learning, reconstruction, contrastive learning

中图分类号: