北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2023, Vol. 46 ›› Issue (4): 70-75.

• 论文 • 上一篇    下一篇

基于多尺度特征Transformer的细粒度图像分类方法

张天魁1,蔡昌利1,骆晓亮2,朱禹涛3   

  1. 1. 北京邮电大学 信息与通信工程学院
    2. 中移(江西)虚拟现实科技有限公司
    3. 金砖国家未来网络研究院中国分院
  • 收稿日期:2022-06-27 修回日期:2022-11-07 出版日期:2023-08-28 发布日期:2023-08-24
  • 通讯作者: 张天魁 E-mail:zhangtiankui@bupt.edu.cn

Multi-Scale Feature Transformer Based Fine-Grained Image Classification Method

ZHANG Tiankui1, CAI Changli1, LUO Xiaoliang2, ZHU Yutao3 #br#   

  • Received:2022-06-27 Revised:2022-11-07 Online:2023-08-28 Published:2023-08-24

摘要: 针对细粒度图像分类任务的长尾分布问题,提出了一种基于多尺度特征 Transformer 的细粒度图像分类方法,实现了底层与深层特征的保护并优化了长尾分布首先,设计了混合数据采样方法,获取用于优化表征学习长尾分布和细粒度特征的三元组数据;然后,设计了 Transformer 多尺度特征优化方法,分别通过底层特征对比学习方法与深层特征平衡学习方法优化特征学习过程,改善类别混淆和细粒度特征的提取,在保护头部类别特征学习的同时增加对尾部类别的关注仿真结果表明,所提方法可以有效地改善细粒度图像分类任务中长尾分布带来的影响,优化特征分布,提高分类准确率

关键词: Transformer, 细粒度图像分类, 细粒度特征, 长尾分布

Abstract: Aiming at the long-tail distribution problem of fine-grained image classification task, a multi-scale feature Transformer based fine-grained image classification method is proposed to protect the underlying and deep features and optimize the long-tail distribution. First, a hybrid data sampling method is designed to obtain the ternary data for optimizing the representation learning, long-tail distribution and fine-grained features. Then, the Transformer multi-scale feature optimization method is designed to optimize the feature learning process by the bottom feature comparison learning method and the deep feature balance learning method, respectively, to improve the category confusion and fine-grained feature extraction, and to increase the attention to the tail category while protecting the head category feature learning. Simulation results show that the proposed method can effectively improve the impact of the long-tail distribution in fine-grained image classification tasks, optimize the feature distribution, and improve classification accuracy.

Key words: Transformer , fine-grained image classification , fine-grained feature , long-tail distribution

中图分类号: