北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2023, Vol. 46 ›› Issue (3): 7-12.

• 人工智能使能网络通信 • 上一篇    下一篇

智能反射面辅助MIMO系统混合波束赋形算法

孙艳华, 乔兰, 王朱伟, 李萌, 司鹏搏   

  1. 北京工业大学 信息学部
  • 收稿日期:2022-05-28 修回日期:2022-07-22 出版日期:2023-06-28 发布日期:2023-06-05
  • 通讯作者: 孙艳华 E-mail:sunashelly@163.com
  • 基金资助:

    北京市教委科技计划项目(JC042001202001)

Hybrid Beamforming for Intelligent Reflecting Surface Assisted MIMO System

SUN Yanhua, QIAO Lan, WANG Zhuwei, LI Meng, SI Pengbo   

  • Received:2022-05-28 Revised:2022-07-22 Online:2023-06-28 Published:2023-06-05

摘要:

针对毫米波大规模多输入多输出系统中智能反射面通信的混合波束赋形问题,提出了一种基于联邦学习的卷积神经网络训练方法在多用户通信系统中,设计模拟波束赋形矩阵和智能反射矩阵码本,并运用穷举搜索算法搜索和速率最大的模拟波束赋形矩阵和智能反射矩阵作为训练数据标签;然后基于联邦学习采用卷积神经网络进行本地训练,找到信道矩阵到波束赋形和智能反射矩阵的映射关系实验结果证明了所提方法的可行性,通过对比有无和随机智能反射面的通信场景,验证了所提方法能构建智能的可编程无线环境,从而更好地利用无线信道,以获得更高的频谱效率

关键词: 联邦学习, 混合波束赋形, 智能反射面

Abstract:

A convolutional neural network training algorithm based on federated learning is proposed for the hybrid beamforming for intelligent reflecting surface assisted communication in millimeter wave massive multiple input multiple output system. In multi-user communication system, the analog beamforming matrix and intelligent reflection matrix with the maximum sum rate are researched by exhaustive search algorithm, which is set codebooks are designed, and the exhaustive search algorithm is used to search the analog beamforming matrix and intelligent reflection matrix with the maximum sum rate are researched by exhaustive search algorithm, which is set as the training data label. Then, based on the federated learning framework, the convolutional neural network is used for local training to map channel matrix to analog beamforming and intelligent reflection matrixes. The simulation results verity the feasibility of convolutional neural network training based on federated learning. Meanwhile, by comparing the communication scene with or without or randomly intelligent reflection matrix, the proposed algorithm.

Key words:

federated learning;hybrid beamforming, intelligent reflecting surface

中图分类号: