北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2023, Vol. 46 ›› Issue (3): 31-36.

• 人工智能使能网络通信 • 上一篇    下一篇

基于深度强化学习的滤波器剪枝方案

刘阳, 滕颖蕾, 牛涛, 郅佳琳   

  1. 北京邮电大学 电子工程学院
  • 收稿日期:2022-06-03 修回日期:2022-07-10 出版日期:2023-06-28 发布日期:2023-06-05
  • 通讯作者: 滕颖蕾 E-mail:lilytengtt@ gmail. com
  • 基金资助:

    国家重点研发计划项目(2021YFB3300100); 国家自然科学基金项目(62171062)

Filter Pruning Algorithm Based on Deep Reinforcement Learning

LIU Yang, TENG Yinglei, NIU Tao, ZHI Jialin   

  • Received:2022-06-03 Revised:2022-07-10 Online:2023-06-28 Published:2023-06-05

摘要:

针对深度神经网络模型在终端设备上部署时面临计算和存储等资源不足的问题,模型剪枝是一种有效的模型压缩方案,在保证模型精度的前提下减少模型的参数量并降低计算复杂度。传统的剪枝方案对于剪枝率及剪枝标准的设置大多依据先验知识,忽略了深度模型中不同层的剪枝敏感度和参数分布差异,缺乏细粒度的优化。对此,提出了一种基于强化学习的滤波器剪枝方案,在满足目标稀疏度的基础上最小化模型剪枝后的精度损失,并采用参数化深度 Q 学习算法求解构建混合变量的非线性优化问题。实验结果表明,所提方案能够为深度模型每一层选择合适的剪枝标准与剪枝率,减小了模型剪枝后的精度损失。

关键词: 边缘计算, 深度学习模型, 滤波器剪枝, 深度强化学习

Abstract:

When the deep neural network model is deployed on the terminal device, it faces the problem of insufficient computing capabilities and storage resources. Model pruning provides an effective model compression method, which can reduce the number of parameters and reduce the computational complexity while ensuring the accuracy of the model. However, the traditional pruning methodsmostly rely on prior knowledge to set pruning rate and pruning standard. They ignore the pruning sensitivity and parameter distribution difference of different layers of deep model, and lack fine-grained optimization. To solve this problem, a filter pruning scheme based on reinforcement learning is proposed to minimize the precision loss of the model after pruning while satisfying the target sparsity. In the proposed scheme, the parameterized deep Q-networks algorithm is used to solve the constructed nonlinear optimization problem with mixed variables. Experimental results show that the proposed scheme can select suitable pruning standard and pruning rate for each layer, and reduce the precision loss of the model after pruning.

Key words: edge computing, deep learning model, filter pruning, deep reinforcement learning

中图分类号: