北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2023, Vol. 46 ›› Issue (2): 50-56.

• 算力网络与分布式云 • 上一篇    下一篇

超密集网络中移动边缘计算的资源分配和任务卸载联合优化研究

魏明亮1,耿绥燕2,赵雄文2,胡玮1,范静怡1   

  1. 1. 华北电力大学
    2. 华北电力大学 电气与电子工程学院
  • 收稿日期:2022-03-15 修回日期:2022-05-31 出版日期:2023-04-28 发布日期:2023-05-14
  • 通讯作者: 魏明亮 E-mail:weiml@ncepu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目;国家自然科学基金资助项目

Research on Resource Allocation and Task Offloading Joint Optimization for Mobile Edge Computing in Ultra-Dense Networks

  • Received:2022-03-15 Revised:2022-05-31 Online:2023-04-28 Published:2023-05-14
  • Contact: Ming-Liang WEI E-mail:weiml@ncepu.edu.cn

摘要: 移动边缘计算(MEC, Mobile Edge Computing)作为一种新兴的计算范式,具有增强设备终端计算能力,大幅减少时延和能耗,在保证用户服务体验的同时延长电池使用寿命等特性。超密集组网(UDN, Ultra-Dense Networks)被视为5G无线通信的关键技术,可在提供低延迟计算的通信服务前提下,减少系统计算成本,提高网络吞吐量。针对超密集网络中的移动边缘计算场景,考虑网络基础设施的超密集部署导致的信道干扰,联合优化资源分配和任务卸载问题,最小化包含时延和能耗的任务计算成本。由于决策变量的复杂耦合,将原始问题拆分为资源分配和任务卸载子问题,提出一种结合凸函数和自适应粒子群(CF-APSO, Convex Function Adaptive Particle Swarm Optimization)的优化算法求解问题,并通过实验仿真验证所提算法的有效性。仿真结果表明,与其他已有方法相比,在微基站密集部署环境中CF-APSO算法可以大幅降低时延和能耗,有效提升系统性能。

关键词: 移动边缘计算, 超密集组网技术, 资源分配, 任务卸载

Abstract: Mobile Edge Computing (MEC) is an emerging computational paradigm, it can enhance the computing capacity of the device terminals, reduce the delay and energy consumption greatly, and extend battery life while ensuring user's service experience. Ultra-dense network (UDN) is regarded as the key technology of 5G wireless communication, it reduces system computing costs and improves network throughput to provide low-latency computing communication services. Aiming at MEC combine UDN, the ultra-dense deployment of networks infrastructures causes channel interference and both time delay and energy consumption is considered, the joint optimization problem of resource allocation and task offloading is studied, in order to minimize the total system cost including time delay and energy consumption. Due to coupling of decision variables, the original problem is decomposed into resource optimization problem and task offloading problem. A CF-APSO algorithm is proposed to obtain the suboptimal solution and the effectiveness is validated. The results show that, in ultra-dense deployment environment of micro base stations, compared with other three algorithms, the algorithm proposed can reduce the delay and energy consumption and improve system performance effectively.

Key words: Mobile edge computing, Ultra-dense networks, Resource allocation, Task offloading

中图分类号: