北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2022, Vol. 45 ›› Issue (6): 138-144.

• 论文 • 上一篇    下一篇

虚实映射误差条件下数字孪生辅助的无人机网络计算任务卸载及资源自适应优化机制

蒋丽,缪家辉,郑镐,谢正昊,赖健鑫   

  1. 广东工业大学
  • 收稿日期:2022-07-12 修回日期:2022-08-27 出版日期:2022-12-28 发布日期:2022-11-24
  • 通讯作者: 蒋丽 E-mail:jiangli@gdut.edu.cn
  • 基金资助:
    国家重点研发计划基金资助项目;移动通信教育部工程研究中心开放研究项目

Virtual-Real Mapping Error Aware Computing Task Offloading and Adaptive Resource Optimization in Digital Twin Driven UAV Networks

  • Received:2022-07-12 Revised:2022-08-27 Online:2022-12-28 Published:2022-11-24

摘要: 为了解决动态时变的无人机(Unmanned Aerial Vehicle, UAV)网络环境下,智能终端设备有限的计算和存储资源不能满足资源密集型任务需求,以及高传输时延和低可靠连接的问题,本文使用数字孪生技术在地面基站(Base Station, BS)构建无人机、智能终端以及无线网络环境的孪生网络模型,以对无人机网络运行状态进行模拟和仿真。进而,基于构建的孪生网络模型设计智能终端设备计算任务卸载机制。在满足智能终端设备计算任务最大容忍延迟的条件下,智能终端设备选择将计算任务全部卸载到无人机,或者在本地进行计算。然后,将计算卸载问题建模为马尔科夫决策过程,建立联合无人机悬停点、计算任务卸载决策、无人机计算资源分配的自适应资源优化模型,实现最大化无人机效用函数的目标。考虑孪生网络模型与真实无人机网络的虚实映射误差,提出近端策略优化算法(Proximal Policy Optimization,PPO),求解自适应资源优化模型。仿真结果表明,与已有方案对比,所提算法可以有效提高无人机的效用。同时,在适应虚实映射误差方面优于传统深度强化学习算法。

关键词: 数字孪生, 无人机网络, 计算任务卸载, 资源自适应优化, 近端策略优化算法

Abstract: To address the problem of large resource consumption for resource intensive tasks computing in dynamic and time-varying unmanned aerial vehicle (UAV) networks with high transmission delay and low reliable connection, digital twin is leveraged to construct twin networks model, which consists of UAV, ground smart terminal and wireless network environment, in order to simulate the operation state of UAV networks. Furthermore, computing tasks offloading mechanism for ground smart terminal is developed in the constructed twin networks model. The ground smart terminal chooses to offload all the computing tasks to the UAV, or perform computing locally, under the constraint of maximum tolerant computing delay. Then, the problem of computing offloading is modeled as a Markov decision process, and an adaptive resource optimization model is established for jointly optimizing UAV hovering point, computing tasks offloading decision and UAV computing resource allocation, so as to maximize the UAV utility. Moreover, a digital twin model empowered Proximal Policy Optimization (PPO) approach is designed to obtain the optimal solutions. Numerical results illustrate that the proposed approach can effective improve the UAV utility. Meanwhile, it can well adapt to the virtual-real mapping error.

Key words: Digital twin, UAV networks, computing tasks offloading, adaptive resource optimization, PPO

中图分类号: