北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2022, Vol. 45 ›› Issue (5): 109-114.

• 研究报告 • 上一篇    下一篇

知识驱动的人机主动对话管理策略

黄宏程,孔田田,胡敏,陶洋,寇兰   

  1. 重庆邮电大学 通信与信息工程学院
  • 收稿日期:2021-10-28 修回日期:2021-12-18 出版日期:2022-10-28 发布日期:2022-11-01
  • 通讯作者: 黄宏程 E-mail:huanghc@cqupt.edu.cn
  • 基金资助:
    国家自然科学基金项目

Knowledge Driven Management Strategy of Human-Machine Active Dialogue

HUANG Hongcheng, KONG Tiantian, HU Min, TAO Yang, KOU Lan #br#   

  • Received:2021-10-28 Revised:2021-12-18 Online:2022-10-28 Published:2022-11-01
  • Contact: HUANG Hongcheng E-mail:huanghc@cqupt.edu.cn
  • Supported by:
    The National Natural Science Foundation of China

摘要: 针对当前的对话系统主要是被动响应回复,尚不能较好地进行主动式对话的问题,提出了一种知识驱动的人机主动对话管理策略,模拟人-人交流模式,将对话分为话题切换和话题深入两个子任务,设计个性化对话管理策略来实现多轮对话中的主动引导和话题转移该策略依据人机交互情感状态确定系统主动对话时机,利用知识图谱作为背景知识信息,主动搜索其在知识图谱中触发的对话实体的多跳邻居集合,从而决定下一步交互内容针对用户情感消极的话题,通过向外传播法来主动寻找新话题;针对用户情感积极的话题,通过向内聚合法来深入响应当前话题实验结果表明,该策略在平衡全局对话连贯性和局部话题一致性的同时,提高了系统对话的主动性,为人机主动对话系统的发展提供了新的参考

关键词: 对话系统, 知识驱动, 主动对话, 情感状态, 对话管理策略

Abstract: To solve the problem that the current dialogue system is mainly passive response and still unable to carry out active dialogue well, a knowledge driven human-machine active dialogue management strategy is proposed, which simulates human communication mode and divedes the dialogue into two sub-tasks: topic switching and topic depth. A personalized dialogue management strategy is designed to realize active guidance and topic transfer in multi-round dialogues. The proposed strategy determines the time of the system's active dialogue based on the emotional state of human-machine interaction, and uses the knowledge graph as the background knowledge information to actively search the multi-hop neighbor set of the dialogue entities that are triggered by the knowledge graph, so as to determine the next interaction content. For topics of users' negative emotions, new topics are actively sought for through outward communication method. For topics with users' positive emotions, the current topic can be deeply respond to through cohesion. The experimental results show that the initiative of model dialogue is improved by the strategy while balancing global dialogue coherence and local topic consistency, which is a new reference for the development of human-machine active dialogue system.

Key words: dialogue system,  knowledge-driven,  active dialogue,  affective state,  dialogue management strategy

中图分类号: