北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2022, Vol. 45 ›› Issue (4): 104-109.doi: 10.13190/j.jbupt.2021-214

• 无线传感器网络 • 上一篇    下一篇

基于图嵌入的多重异质网络节点重要度评估

舒坚, 尧小龙, 李睿瑞   

  1. 南昌航空大学 软件学院, 南昌 330063
  • 收稿日期:2021-10-08 出版日期:2022-08-28 发布日期:2022-09-03
  • 作者简介:舒坚(1964—),男,教授,邮箱:shujian@nchu.edu.cn。
  • 基金资助:
    国家自然科学基金项目(62062050,61962037)

Node Importance Evaluation in Multiplex Heterogeneous Network Based on Graph Embedding

SHU Jian, YAO Xiaolong, LI Ruirui   

  1. School of Software, Nanchang Hangkong University, Nanchang 330063, China
  • Received:2021-10-08 Online:2022-08-28 Published:2022-09-03

摘要: 为提高多重异质网络中节点重要度评估的准确性,提出一种基于图嵌入的节点重要度评估方法。通过随机游走采样邻居节点,聚合节点在同种连边类型和不同连边类型下的节点特征,利用多层感知机将特征映射到嵌入空间,得到嵌入向量;根据节点的嵌入向量和局部结构特征构建重要度评估指标。在CElegans和CS-Aarhus等数据集上的实验结果表明,与多重介数中心性、有偏页面排序和多重证据中心性等方法相比,所提方法具有更高的准确性。

关键词: 多重异质网络, 节点重要度评估, 图嵌入

Abstract: To improve the accuracy of node importance evaluation in multiplex heterogeneous network (MHEN), a method of node importance evaluation is proposed for MHEN based on graph embedding. For the same type and different types of edges, the features of the nodes are aggregated after random walk sampling neighbor nodes, and the features are mapped to the embedding space by multi-layer perceptron to obtain the embedding vectors. Then, the node importance evaluation index for MHEN is constructed by the embedding vectors of nodes and features of local structure. The experimental results on mainstream datasets, such as CElegans and CS-Aarhus show that compared with multiplex betweenness centrality, biased PageRank and multiplex evidential centrality, the proposed method performs better in term of the accuracy.

Key words: multiplex heterogeneous network, node importance evaluation, graph embedding

中图分类号: