北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2022, Vol. ›› Issue (6): 42-47.

• 论文 •    

一种基于多码元时分编码的SSVEP-BCI少训练检测算法

张舒玲,杨晨,张洪欣,叶晓晨   

  1. 北京邮电大学
  • 收稿日期:2022-02-03 修回日期:2022-05-02 出版日期:2022-12-28 发布日期:2022-11-24
  • 通讯作者: 张洪欣 E-mail:hongxinzhang@263.com
  • 基金资助:
    国家自然科学基金;北京邮电大学中央高校基本科研专项资金;广东省重点领域研发计划;航空科学基金;国家重点基础研究发展规划项目

A SSVEP-BCI Less-training Detection Algorithm Based on Multi-symbol Time Division Coding

  • Received:2022-02-03 Revised:2022-05-02 Online:2022-12-28 Published:2022-11-24
  • Contact: Hong XinZhang E-mail:hongxinzhang@263.com
  • Supported by:
    National Natural Science Foundation of China under Grant;the Fundamental Research Funds for the Central Universities; the Key Research and Development Program of Guangdong Province;the Aeronautical Science Foundation of China;the National Key Research and Development Program of China

摘要: 稳态视觉诱发电位(Steady-State Visual Evoked Potentials, SSVEP)脑-机接口( Brain Computer Interface, BCI)是无创脑-机接口研究领域三种主流范式之一。已有研究表明,通过引入被试者的预训练数据可以有效提升SSVEP-BCI的识别效率。然而,传统SSVEP-BCI有训练算法都需要预先采集大量被试者的脑电数据,大幅提升了脑-机接口的使用成本,从而影响了SSVEP-BCI的普及和推广。因此如何在确保BCI识别效率的前提下降低系统的训练成本成为SSVEP-BCI领域的研究热点之一。为降低过长训练对脑-机接口应用带来的不利影响,本研究提出了一种基于多码元时分编码的SSVEP-BCI少训练检测算法。该算法充分利用多码元时分编码方案带来的优势特性,采用码元响应复用的方式,以少量脑电训练数据即可识别出大量备选目标。在12名被试参与的40目标30Hz高频编码的脑-机接口系统在线实验中,该算法仅需要36s训练数据,即可实现平均86.04%±10.27%的识别精度以及97.41±19.12bits/min的信息传输速率。实验结果表明,该算法能够在少量训练数据条件下实现较高的识别准确率和信息传输速率,因此有望提升SSVEP-BCI的实际应用价值。

关键词: 稳态视觉诱发电位, 脑-机接口, 多码元, 时分编码, 少训练

Abstract: Steady-State Visual Evoked Potentials (SSVEP) Brain Computer Interface (BCI) is one of the three mainstream paradigms in the field of noninvasive brain-computer interface research. Existing studies have shown that the recognition efficiency of SSVEP-BCI can be effectively improved by introducing the calibrated data of the subjects. However, the traditional SSVEP-BCI training algorithm have to collect a large number of subjects' EEG data before training, which greatly increases the cost of SSVEP-BCI, thus disadvantage to the popularization of SSVEP-BCI. Therefore, how to reduce the training cost of the system meanwhile ensuring the efficiency of BCI recognition has become one of the research hotspots of SSVEP-BCI. In order to reduce the defect of long training on SSVEP-BCI., this study proposes a less-training detection algorithm based on multi-symbol time-division coding for SSVEP-BCI. The algorithm makes full use of the advantages of the multi-symbol time-division coding scheme, which uses the symbol response multiplexing method to identify a large number of candidate targets with a small amount of EEG training data. In the online experiment of 40 target 30Hz high frequency encoded brain-computer interface system with 12 subjects, the algorithm can achieve an average recognition accuracy of 86.04%±10.27% and information transfer rate of 97.41±19.12bits/min with only 36s training time. The experimental results show that the algorithm can achieve high recognition accuracy and information transmission rate with a small amount of training data, thus it is expected to improve the practical application value of SSVEP-BCI.

Key words: steady-state visual evoked potentials, brain-computer interface, multi-symbol, time division coding, less training

中图分类号: