北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2021, Vol. 44 ›› Issue (5): 81-87,106.doi: 10.13190/j.jbupt.2021-010

• 论文 • 上一篇    下一篇

基于图嵌入和CaGBDT的多模态出行推荐

孙全明, 常磊, 马铖, 曲志坚   

  1. 山东理工大学 计算机科学与技术学院, 淄博 255049
  • 收稿日期:2021-01-19 出版日期:2021-10-28 发布日期:2021-09-06
  • 通讯作者: 曲志坚(1980-),男,副教授,硕士生导师,E-mail:zhijianqu@sdut.edu.cn. E-mail:zhijianqu@sdut.edu.cn
  • 作者简介:孙全明(1995-),男,硕士生.
  • 基金资助:
    山东省自然科学基金项目(ZR2017LF004);山东省高等学校优秀青年创新团队支持计划项目(2019KJN048)

Multi-Modal Transportation Recommendation Based on Graph Embedding and CaGBDT

SUN Quan-ming, CHANG Lei, MA Cheng, QU Zhi-jian   

  1. School of Computer Science and Technology, Shandong University of Technology, Zibo 255049, China
  • Received:2021-01-19 Online:2021-10-28 Published:2021-09-06

摘要: 针对交通出行服务中推荐方式单一、容易忽略用户出行偏好等问题,借鉴多粒度级联森林结构,提出了一种级联梯度提升树模型(CaGBDT).该模型利用级联结构增加模型的深度,进而实现了特征的深层次表示学习.同时,为了解决样本类别不平衡问题,提出了一种基于鲍威尔算法的指标优化层,其通过为每个类别搜索一个阈值,对模型的预测结果进行权重修正,以实现最大化评价指标的目的.此外,CaGBDT模型可以根据用户的出行记录,构建用户出行全局关系图,利用图嵌入表示学习方法,自动提取用户出行的空间上下文关系,从而提高特征提取的效率.

关键词: 交通出行推荐, 图嵌入, 特征工程, 级联森林, 梯度提升决策树

Abstract: To solve the problems in transportation recommendation service,such as single recommended methods and ignoring the user travel preferences,a cascade gradient boosting decision tree (CaGBDT) model is proposed based on the multi-grained cascade forest structure. CaGBDT uses the cascade structure to increase the depth, and then realizes the deep-level representation learning of features. Meanwhile to solve the imbalance of sample class,an index optimization layer based on Powell algorithm is proposed. By searching a threshold for each class,the weight of the prediction results of the model is modified to maximize the evaluation indexes. In addition,a user travel global relationship graph can be constructed by the CaGBDT model via referring the user's travel record, and the spatial context relationship of the user's travel is extracted automatically by the graph embedding method to improve the efficiency of feature extraction.

Key words: traffic recommendation, graph embedding, feature engineering, cascade forest, gradient boosting decision tree

中图分类号: