[1] Mellon N, Niparko J K, Rathmann C, et al. Should all deaf children learn sign language[J]. Pediatrics, 2015, 136(1):170-176. [2] Koller O, Zargaran S, Ney H, et al. Deep sign:hybrid CNN-HMM for continuous sign language recognition[C]//BMVC 2016. York:BMVC, 2016:1-12. [3] Koller O, Zargaran S, Ney H, et al. Re-sign:re-aligned end-to-end sequence modelling with deep recurrent CNN-HMMs[C]//CVPR 2017. Hawaii:IEEE Press, 2017:3416-3424. [4] Cui Runpeng, Liu Hu, Zhang Changshui, et al. Recu-rrent convolutional neural networks for continuous sign language recognition by staged optimization[C]//CVPR 2017. Hawaii:IEEE Press, 2017:1610-1618. [5] Yang Wenwen, Tao Jinxu, Ye Zhongfu, et al. Conti-nuous sign language recognition using level building based on fast hidden Markov model[J]. Pattern Recognition Letters, 2016, 78(15):28-35. [6] Huang Jie, Zhou Wenggang, Zhang Qilin, et al. Video-based sign language recognition without temporal segmentation[C]//AAAI-18. Louisiana:AAAI Press, 2018:2257-2264. [7] Guo Dan, Zhou Wengang, Wang Meng, et al. Hierarchical LSTM for sign language translation[C]//AAAI-18. Louisiana:AAAI Press, 2018:6845-6852. [8] Zhang Jihai, Zhou Wengang, Li Houqiang, et al. A threshold-based HMM-DTW approach for continuous sign language recognition[C]//ICIMCS'14. New York:ACM Press, 2014:237-240. [9] Li Kehuang, Zhou Zhengyu, Lee C H. Sign transition modeling and a scalable solution to continuous sign language recognition for real-world applications[J]. ACM Transactions on Accessible Computing, 2016, 8(2):1-23. [10] Bukhari J, Rehman M, Malik S I, et al. American sign language translation through sensory glove; signspeak[J]. International Journal of u- and e- Service, Science and Technology, 2015, 8(1):131-142. [11] Kamal S M, Chen Y, Li S, et al. Technical approaches to Chinese sign language processing:a review[J]. IEEE Access, 2019, 7:96926-96935. [12] Gao Wen, Fang Gaolin, Zhao Debin, et al. A Chinese sign language recognition system based on SOFM/SRN/HMM[J]. Pattern Recognition, 2004, 37(12):2389-2402. [13] Benalcazar M E, Jaramillo A G, Zea J A, et al. Hand gesture recognition using machine learning and the Myo armband[C]//25th European Signal Processing Confe-rence. Kos island:Institute of Electrical and Electronics Engineers Incorporated, 2017:1040-1044. [14] Yang Xidong, Chen Xiang, Cao Xiang, et al. Chinese sign language recognition based on an optimized tree-structure framework[J]. IEEE Journal of Biomedical and Health Informatics, 2017, 21(4):994-1004. [15] Kaya E, Kumbasar T. Hand gesture recognition systems with the wearable Myo armband[C]//CEIT 2018. Istanbul:IEEE Press, 2018:1-6. [16] Zhuang Yongjie, Lv Bo, Sheng Xinjun, et al. Towards Chinese sign language recognition using surface electromyography and accelerometers[C]//201724th International Conference on Mechatronics and Machine Vision in Practice. Albany:IEEE Press, 2017:1-5. [17] Yu Yi, Chen Xiang, Cao Shuai, et al. Exploration of Chinese sign language recognition using wearable sensors based on deep belief net[J]. IEEE Journal of Biome-dical and Health Informatics, 2020, 24(5):1310-1320. [18] Mittal A, Kumar P, Roy P P, et al. A modified LSTM model for continuous sign language recognition using leap motion[J]. IEEE Sensors Journal, 2019, 19(16):7056-7063. [19] Gupta R, Jha N. Real-time continuous sign language classification using ensemble of windows[C]//ICACCS 2020. Copenhagen:IEEE Press, 2020:73-78. [20] Wahid F, Tafreshi R, Langari R, et al. A multi-window majority voting strategy to improve hand gesture recognition accuracies using electromyography signal[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(2):427-436. [21] Hou Jiahui, Li Xiangyang, Zhu Peide, et al. Signspeaker:a real-time, high-precision smartwatch-based sign language translator[C]//MobiCom'19. New York:ACM Press, 2019:1-15. |