北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2021, Vol. 44 ›› Issue (4): 68-74.doi: 10.13190/j.jbupt.2020-221

• 论文 • 上一篇    下一篇

基于多属性决策模型的雾计算用户关联算法

申滨, 刘笑笑, 黄晓舸   

  1. 重庆邮电大学 移动通信技术重庆市重点实验室, 重庆 400065
  • 收稿日期:2020-10-27 发布日期:2021-10-13
  • 作者简介:申滨(1978-),男,教授,E-mail:shenbin@cqupt.edu.cn.
  • 基金资助:
    国家自然科学基金项目(61831002)

User Association Algorithm for Fog Computing Based on Multiple Attribute Decision Making Model

SHEN Bin, LIU Xiao-xiao, HUANG Xiao-ge   

  1. Chongqing Key Laboratory of Mobile Communications, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • Received:2020-10-27 Published:2021-10-13

摘要: 针对密集异构蜂窝网络中的雾计算用户关联选择问题,提出一种基于多属性决策模型的雾计算用户关联算法.通过对关键性能指标的选取和建模以及对组合权重的设计,达到调节属性优先级的目的.同时,设计了综合评判指标,实现了对多个属性的联合优化.仿真结果表明,所提方案不仅能对用户体验的质量和系统性能进行权衡处理,还能够平衡业务流量的分配,有效降低关联时延和系统能耗.

关键词: 雾计算, 密集异构蜂窝网络, 用户关联, 多属性决策, 权衡

Abstract: Fog computing enabled heterogeneous cellular networks suffer from the high complexity issue of user associations. To solve the problem, a user association algorithm based on multi-attribute decision model is proposed. The proposed method adjusts the attribute priority by appropriately selecting key performance indicators (KPI), and designing models and the combination weights. Meanwhile, comprehensive evaluation indicator is designed to jointly optimize the six KPIs. Simulation results show that the proposed method can not only achieve a superior trade-off between quality of experience and system performance, but also effectively reduce the association delay and system energy consumption. Moreover, the porposed method also has advantages in load balancing.

Key words: fog computing, dense heterogeneous cellular network, user association, multiple attribute decision making, trade-off

中图分类号: