北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2021, Vol. 44 ›› Issue (4): 115-120.doi: 10.13190/j.jbupt.2020-250

• 研究报告 • 上一篇    下一篇

双重注意力充分组合评论特征的推荐模型

李剑, 刘鹏, 刘维   

  1. 北京邮电大学 人工智能学院, 北京 100876
  • 收稿日期:2020-11-20 发布日期:2021-07-13
  • 作者简介:李剑(1976-),男,教授,博士生导师,E-mail:lijian@bupt.edu.cn.
  • 基金资助:
    国家自然科学基金项目(U1636106);北京市自然科学基金项目(4182006)

Recommendation Model for Fully Combining Review Features Based on Dual Attention

LI Jian, LIU Peng, LIU Wei   

  1. School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2020-11-20 Published:2021-07-13

摘要: 针对基于评论文本推荐系统的特征没有充分组合的问题,提出一种利用双重注意力实现评论特征组合的推荐模型.首先利用经情感分类任务微调后的编码模型对评论文本进行编码,得到对应的特征向量;然后利用双线性内积计算用户与商品之间评论特征向量的交叉注意力,实现用户和商品之间评论特征的交叉组合;再利用多头自注意力实现用户和商品对应评论特征的自组合,得到用户和商品最终的特征表示.在真实数据集上的实验结果表明,所提模型的均方误差相比其他模型下降了1.43%.

关键词: 特征组合, 编码模型, 双线性内积注意力, 多头自注意力

Abstract: To fully combine the features of review text in recommendation systems, a recommendation model fully combining review features based on dual attention (FCRF) is proposed. First, the model encodes the review text by utilizing the encoder model, which is fine-tuned by the sentiment classification task to obtain the corresponding feature embedding. Secondly, to realize the cross combination between user features and item features, the bilinear inner product is adopted to calculate the cross attention of review feature embeddings between the user and the item. Thirdly, to obtain the final feature representation of the user and the item, the multi-head self-attention is adopted to realize the self-combination of the user's review features and the item's review features. Experimental results on four real-world datasets show that the mean square error of FCRF is 1.43% lower than that of the state-of-the-art model, which verifies the effectiveness of FCRF.

Key words: feature combination, encoder model, bilinear inner product attention, multi-head self-attention

中图分类号: