北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2021, Vol. 44 ›› Issue (3): 67-72.doi: 10.13190/j.jbupt.2020-147

• 论文 • 上一篇    下一篇

图像样式风格迁移的行人再识别方法

王辰魁1, 陈岳林1, 蔡晓东2   

  1. 1. 桂林电子科技大学 机电工程学院, 桂林 541000;
    2. 桂林电子科技大学 信息与通信学院, 桂林 541000
  • 收稿日期:2020-09-08 出版日期:2021-06-28 发布日期:2021-06-23
  • 通讯作者: 陈岳林(1963-),男,教授,硕士生导师,E-mail:370883566@qq.com. E-mail:370883566@qq.com
  • 作者简介:王辰魁(1996-),男,硕士生.
  • 基金资助:
    新疆维吾尔自治区重点研发计划项目(2018B03022-1,2018B03022-2);桂林市科技计划项目(20190412)

Person Re-Identification Method Based on Image Style Transfer

WANG Chen-kui1, CHEN Yue-lin1, CAI Xiao-dong2   

  1. 1. School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541000, China;
    2. School of Information and Communication, Guilin University of Electronic Technology, Guilin 541000, China
  • Received:2020-09-08 Online:2021-06-28 Published:2021-06-23

摘要: 现有行人再识别模型的训练集,来源于有限的固定采集设备,样本样式风格缺乏多样性.通过循环生成对抗网络,使不同摄像机捕捉到的图像数据进行样式风格迁移,可以通过较低成本来提升样本风格的多样性.为了提高模型的泛化能力,设计了一种新的正负样本融合训练方法.首先,把样式风格迁移后的样本作为负样本,样式风格迁移前的样本作为正样本,将正负样本同时送入模型训练;进一步,为了防止过拟合,也为了考虑错误标签位置的损失,采用了标签平滑正则化;同时,为了更多地关注困难、易错分的样本,实现对负样本的损失优化,采用了焦点损失函数.实验结果表明,所提方法在Market-1501数据集和DukeMTMC-reID数据集上的识别准确率分别提升了1.51%和2.07%.

关键词: 循环生成对抗网络, 行人再识别, 标签平滑正则化, 焦点损失

Abstract: The training set of the existing person re-identification model comes from limited fixed collection equipment, and the sample style lacks diversity. Through the cyclic generative adversarial network, the image data captured by different cameras can be styled and style transferred, which can improve the diversity of sample styles at a lower cost. In order to improve the generalization ability of the model, a new training mechanism of positive and negative samples fusion is designed. Firstly, the samples after the style transfer are regarded as negative samples, and the samples before the style transfer are regarded as positive samples. The positive and negative samples are sent to the model training at the same time. Furthermore, in order to prevent over fitting and consider the loss of false labels positions, label smoothing regularization is adopted. At the same time, in order to pay more attention to difficult and error-prone samples, and to optimize the loss of negative samples, a focal loss function is adopted. Experiments show that there is a significant increase of 1.51% and 2.07% on the Market-1501 and DukeMTMC-reID datasets, respectively.

Key words: cyclic generative adversarial network, person re-identification, label smoothing loss regularization, focus loss

中图分类号: