北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2021, Vol. 44 ›› Issue (3): 61-66.doi: 10.13190/j.jbupt.2020-152

• 论文 • 上一篇    下一篇

融合建筑信息模型的基站自标定技术

王宇威1, 王晓轩1, 沈婕2, 王智1   

  1. 1. 浙江大学 控制科学与工程学院, 杭州 310027;
    2. 南京师范大学 地理科学学院, 南京 210023
  • 收稿日期:2020-08-29 出版日期:2021-06-28 发布日期:2021-06-23
  • 通讯作者: 王智(1969-),男,副教授,博士生导师,E-mail:zjuwangzhi@zju.edu.cn. E-mail:zjuwangzhi@zju.edu.cn
  • 作者简介:王宇威(1997-),男,博士生.
  • 基金资助:
    国家重点研发计划项目(2017YFE0101300);国家自然科学基金项目(61773344,61273079);浙江省自然科学基金项目(LZ19F010003);中央高校基本科研业务费专项项目(K20210001,浙江大学NGICS大平台)

The Beacons Self-Calibration Technology Combined with Building Information Modeling

WANG Yu-wei1, WANG Xiao-xuan1, SHEN Jie2, WANG Zhi1   

  1. 1. College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China;
    2. School of Geography, Nanjing Normal University, Nanjing 210023, China
  • Received:2020-08-29 Online:2021-06-28 Published:2021-06-23

摘要: 由于建筑材料的遮挡和吸收,室内的无线信号严重受损,致使全球卫星导航系统在室内场景中效果并不理想,因此基于基站的室内定位技术成为关键,其定位性能与基站标定精度关系密切.基于基站通常布置在建筑体墙面上的事实,提出了一种融合建筑信息模型的基站自标定技术,用于提升自标定性能,同时,使用克拉美罗下界进行理论性能分析.所提技术在半定规划算法中融入了建筑信息模型空间约束.克拉美罗下界分析和算法仿真实验结果表明,融入建筑信息模型中的空间约束有效地提升了基站自标定的精度.

关键词: 室内定位, 位置信息服务, 自标定, 建筑信息模型, 克拉美罗下界

Abstract: The global navigation satellite system does not work ideally, because the satellite signal decays rapidly indoors due to the occlusion and absorption of building materials. As a result, the localization technologies based on beacons become state-of-art indoor localization technologies. The accuracy of these localization technologies is tightly related to the beacons' calibration accuracy. Based on the fact that beacons are usually set on the walls, a beacons self-calibration technology based on building information modeling is proposed to improve the performance of self-calibration. In the meantime, Cramer-Rao lower bound (CRLB) is used to analyse its performance in theory. Based on the semidefinite programming self-calibration algorithm, the proposed algorithm considers to use the building information modeling. CRLB analysis and simulation shows the proposed algorithm efficiently improve the accuracy of self-calibration.

Key words: indoor localization, location-based services, self-calibration, building information modeling, Cramer-Rao lower bound

中图分类号: