北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2021, Vol. 44 ›› Issue (1): 26-31.doi: 10.13190/j.jbupt.2019-210

• 论文 • 上一篇    下一篇

基于生成对抗网络模型的RSS缺失值预测

任晓琪, 翁仲铭   

  1. 天津大学 智能与计算学部, 天津 300350
  • 收稿日期:2019-11-09 出版日期:2021-02-28 发布日期:2021-09-30
  • 作者简介:任晓琪(1994-),女,硕士生,renxiaoqi@tju.edu.cn;翁仲铭(1970-),男,副教授.

RSS Missing Value Estimation with Generative Adversarial Networks Model

REN Xiao-qi, OWN Chung-ming   

  1. College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
  • Received:2019-11-09 Online:2021-02-28 Published:2021-09-30

摘要: 无线上网(Wi-Fi)定位是目前室内定位中的主流方法,指纹数据库的构建是Wi-Fi定位系统的关键.然而指纹数据库中的接收信号强度(RSS)指纹值会随室内环境的变化而变化,通常需要不断地重新测量指纹值去更新指纹数据库,这就导致了成本高、耗时长,尤其是在定位区域较大的动态环境中是不切实际的.针对此问题,提出了自适应上下文生成对抗网络模型.该模型只需测量指纹数据库中的部分RSS指纹,即"参考点",然后通过学习参考点的分布情况,预测特定位置的缺失指纹.仿真实验结果表明,室内定位精确性显著提高,人力成本大大减少.

关键词: 接收信号强度指纹数据库, 生成对抗网络, 室内定位系统

Abstract: Wireless-fidelity(Wi-Fi)positioning is currently the mainstream method in indoor positioning,and the construction of fingerprint database is the key to Wi-Fi positioning system. However,the received signal strength(RSS)value in the fingerprint database will be changed with the variability of the indoor environment,and it is usually need to constantly re-measure the value in the fingerprint database,which leads to high cost and long time,especially in the dynamic environment with large positioning area. To address this problem,the adaptive context generative adversarial networks model is proposed. The model only needs to measure part of RSS fingerprints,and then learn the RSS fingerprints distribution to finally predict the missing fingerprint at a specific location. Simulation shows that the accuracy of indoor positioning is significantly improved,and the labor cost is greatly reduced.

Key words: received signal strength fingerprint database, generative adversarial network, indoor positioning system

中图分类号: