[1] Al-Dhuraibi Y, Paraiso F, Djarallah N, et al. Elasticity in cloud computing:state of the art and research challenges[J]. IEEE Transactions on Services Computing, 2017, 11(2):430-447. [2] Yang Jingqi, Liu Chuanchang, Shang Yanlei, et al. A cost-aware auto-scaling approach using the workload prediction in service clouds[J]. Information Systems Frontiers, 2014, 16(1):7-18. [3] Calheiros R N, Masoumi E, Ranjan R, et al. Workload prediction using ARIMA model and its impact on cloud applications' QoS[J]. IEEE Transactions on Cloud Computing, 2014, 3(4):449-458. [4] Liu Chunhong, Liu Chuanchang, Shang Yanlei, et al. An adaptive prediction approach based on workload pattern discrimination in the cloud[J]. Journal of Network and Computer Applications, 2017, 80:35-44. [5] Islam S, Keung J, Lee K, et al. Empirical prediction models for adaptive resource provisioning in the cloud[J]. Future Generation Computer Systems, 2012, 28(1):155-162. [6] Hoang M N, Gaurav K, Daeyoung K. Host load prediction in cloud computing using long short-term memory encoder-decoder[J]. The Journal of Supercomputing, 2019, 75(11):7592-7605. [7] Verma A, Pedrosa L, Korupolu M, et al. Large-scale cluster management at Google with Borg[C]//ECCS 2015:Proceedings of the Tenth European Conference on Computer Systems. New York:ACM, 2015:18-35. [8] Jiang Yexi, Perng Changshing, Li Tao, et al. Cloud analytics for capacity planning and instant vm provisioning[J]. IEEE Transactions on Network and Service Management, 2013, 10(3):312-325. [9] Parminder S, Pooja G, Kiran J. Tasm:technocrat arima and SVR model for workload prediction of web applications in cloud[J]. Cluster Computing, 2019, 22(2):619-633. [10] Kumar J, Goomer R, Singh A K. Long short term memory recurrent neural network (LSTM-RNN) based workload forecasting model for cloud datacenters[J]. Procedia Computer Science, 2018, 125:676-682. [11] Janardhanan D, Barrett E. CPU workload forecasting of machines in data centers using LSTM recurrent neural networks and ARIMA models[C]//ICITST 2017:the 12th International Conference for Internet Technology and Secured Transactions. Cambridge:IEEE, 2017:55-60. [12] Zhou Jiayu, Chen Jianhui, Ye Jieping. Malsar:multi-task learning via structural regularization[EB/OL]. 2012(2012-12-18)[2019-11-10]. http://www.MALSAR.org. [13] 徐前方, 王嘉春, 肖波. 融合时空上下文信息的兴趣点推荐[J]. 北京邮电大学学报, 2018, 41(1):37-42, 50. Xu Qianfang, Wang Jiachun, Xiao Bo. Point-of-interest recommendation with spatio-temporal context awareness[J]. Journal of Beijing University of Posts and Telecommunications, 2018, 41(1):37-42, 50. [14] Reiss C, Wilkes J, Hellerstein J L. Google cluster-usage traces:format+ schema[EB/OL]. 2014(2014-11-17)[2019-11-10]. https://github.com/google/cluster-data. [15] Han Li, Romero C E, Yao Zheng. Wind power forecasting based on principle component phase space reconstruction[J]. Renewable Energy, 2015, 81:737-744. |