北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2020, Vol. 43 ›› Issue (4): 101-105.doi: 10.13190/j.jbupt.2019-203

• 研究报告 • 上一篇    下一篇

一种面向边缘计算节点能量优化的QoS约束路由算法

张德干, 陈露, 陈晨, 张婷, 崔玉亚   

  1. 1. 天津理工大学 计算机视觉与系统省部共建教育部重点实验室, 天津 300384;
    2. 天津理工大学 天津市智能计算及软件新技术重点实验室, 天津 300384
  • 收稿日期:2019-09-30 发布日期:2020-08-15
  • 通讯作者: 陈露(1991-),女,博士生,E-mail:1287725598@qq.com. E-mail:1287725598@qq.com
  • 作者简介:张德干(1970-),男,教授.
  • 基金资助:
    天津市自然科学基金重点项目(18JCZDJC96800);天津市教育科学"十三五"规划课题(VESP3026)

A New Algorithm of QoS Constrained Routing for Node Energy Optimization of Edge Computing

ZHANG De-gan, CHEN Lu, CHEN Chen, ZHANG Ting, CUI Yu-ya   

  1. 1. Key Laboratory of Computer Vision & System, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China;
    2. Tianjin Key Laboratory of Intelligent Computing & Novel Software Technology, Tianjin University of Technology, Tianjin 300384, China
  • Received:2019-09-30 Published:2020-08-15

摘要: 在满足节点间端到端时延、可靠性服务要求的基础上,为了解决现有多路径路由协议能耗较高的问题,提出一种面向边缘计算节点能量优化的多服务质量(QoS)约束路由算法(MQEN).考虑端到端延迟、可靠性、能量消耗的QoS约束条件,采用边缘计算、机器学习相关技术,构建多约束最优路径传感器网络模型,引入能量感知节点唤醒策略、学习自动机奖惩机制.该算法结合边缘计算,预处理节点的原始数据,加快有效数据的传输、处理.采用自动机与环境交互的方式加快算法收敛.使用控制节点休眠激活状态的方法优化网络能量消耗,延长网络生命周期.实验结果证明,MQEN算法可降低网络能量消耗,并且能满足多QoS约束对端到端延迟、可靠性服务的要求.

关键词: 无线传感器, 边缘计算, 自动学习机, 机器学习, 能量感知

Abstract: Based on satisfying the requirements of end-to-end delay and reliable service among nodes,to solve the problem of high energy consumption of existing multi-path routing protocols,a quality of multi-service(QoS) constrained route algorithm for edge computing and node energy optimization(MQEN) was proposed. The QoS constraints of end-to-end delay,reliability,and energy expenditure were considered. The related technologies of edge computing and machine learning were utilized to create a sensor network model of multi-constrained majorization path,introducing a wake-up strategy of energy-aware node as well as reward and punishment mechanism based on learning automaton. This algorithm combined edge computing to preprocess the original data of the node,speeding up effective data transmission and treatment. The automata-environment interaction approach was adopted to accelerate algorithm convergence. The technique of sleep activation of control node was employed to optimize network power consumption and extend the network life cycle. Experiments indicate that the MQEN algorithm reduces network power expenditure and corresponds to the demands of multiple QoS constraints for the end-to-end delay and credible services.

Key words: wireless sensor, edge computing, learning automata, machine learning, energy-aware

中图分类号: