[1] Gahar R M, Arfaoui O, Hidri M S, et al. An ontology-driven MapReduce framework for association rules mining in massive data[J]. Procedia Computer Science, 2018, 126:224-233.
[2] Hidri M S, Zoghlami M A, Ayed R B. Speeding up the large-scale consensus fuzzy clustering for handling big data[J]. Fuzzy Ets and Systems, 2018(348):50-74.
[3] Ester M, Kriegel H P, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//International Conference on Knowledge Discovery & Data Mining. New York:ACM, 1996:226-231.
[4] Wang W. STING:a statistical information grid approach to spatial data mining[J]. Proc of Very Large Database Conf, 1997(15):186-195.
[5] Hartigan J A, Wong M A. A K-means clustering algorithm[J]. Journal of the Royal Statistical Society:Series C (Applied Statistics), 1979, 28(1):100-108.
[6] Wu X, Kumar V, Ross J, et al. Top 10 algorithms in data mining[J]. Knowledge And Information Systems, 2007(14):1-37.
[7] Arthur D, Vassilvitskii S. K-means++:the advantages of careful seeding[J]. Proceedings of Theghteenth Annual Acm Siam Symposiumon Discrete Algorithms Society for Industrial & Applied Mathematics, 2007, 11(6):1027-1035.
[8] Shmeis Z, Jaber M. Fine and coarse grained composition and adaptation of spark applications[J]. Future Generation Computer Systems, 2018:629-640.
[9] He Qian, Chen Yiting, Dong Qinghe, et al. A parallel clustering and test partitioning techniques based mining trajectory algorithm for moving objects[C]//2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). Guilin:Cuilin University of Electronic Technology, 2017:455-462.
[10] Tibshirani R, Hastie W T. Estimating the umber of clusters in a data Et via the gap statistic[J]. Journal of the Royal Statistical Society, 2001, 63(2):411-423.
[11] Ishioka T. Extended K-means with an efficient estimation of the number of clusters[C]//Intelligent Data Engineering & Automated Learning-ideal, Data Mining, Financial Engineering, & Intelligent Agents, Second International Conference. HongKong:Morgan Kautmann Publishs Inc, 2000.
[12] Capo M, Perez A, Lozano J A. An efficient approximation to the K-means clustering for massive data[J]. Knowledge-Based Systems, 2017, 117(2):56-69.
[13] Wu Kehe, Zeng Wenjing, Wu Tingting, et al. Research and improve on K-means algorithm based on hadoop[C]//IEEE International Conference on Software Engineering & Service Science. Piscataway:IEEE, 2015:334-337.
[14] Wang Bowen, Yin Jun, Hua Qi, et al. Parallelizing K-Means Based Clustering on Spark[C]//International Conference on Advanced Cloud and Big Data. Piscataway:IEEE, 2016:31-36.
[15] 徐晓, 丁世飞, 孙统风, 等. 基于网格筛选的大规模密度峰值聚类算法[J]. 计算机研究与发展, 2018, 55(11):79-89. Xu Xiao, Ding Shifei, Sun Tongfeng, et al. Large-scale density peaks clustering algorithm based on grid screening[J]. Journal of Computer Research and Development, 2018, 55(11):79-89.
[16] 于彦伟, 贾召飞, 曹磊, 等. 面向位置大数据的快速密度聚类算法[J]. 软件学报, 2018, 29(8):2470-2484. Yu Yanwei, Jia Zhaofei, Cao Lei, et al. Fast density-based clustering algorithm for location big data[J]. Journal of Software, 2018, 29(8):2470-2484.
[17] Yang Jie, Ma Yan. Zhang Xiangfen, et al. An initialization method based on hybrid distance for K-means algorithm[J]. Neural Computation, 2017, 29(11):3094-3117. |