北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2020, Vol. 43 ›› Issue (1): 97-103.doi: 10.13190/j.jbupt.2019-076

• 研究报告 • 上一篇    下一篇

一种面向软件定义网络的大流检测机制

邢长友1, 李东阳1, 谢升旭1, 张国敏1, 魏伟2   

  1. 1. 陆军工程大学 指挥控制工程学院, 南京 210001;
    2. 31106部队, 南京 210016
  • 收稿日期:2019-05-11 出版日期:2020-02-28 发布日期:2020-03-27
  • 通讯作者: 李东阳(1996-),男,硕士生,E-mail:dongyangli_nj@126.com. E-mail:dongyangli_nj@126.com
  • 作者简介:邢长友(1982-),男,副教授,硕士生导师,E-mail:changyouxing@126.com.
  • 基金资助:
    国家自然科学基金项目(61379149,61772271);国家博士后科学基金项目(2017M610286)

A Heavy Hitter Detection Mechanism in Software Defined Networks

XING Chang-you1, LI Dong-yang1, XIE Sheng-xu1, ZHANG Guo-min1, WEI Wei2   

  1. 1. Army Engineering University, Command and Control Engineering College, Nanjing 210001, China;
    2. Corps 31106, Nanjing 210016, China
  • Received:2019-05-11 Online:2020-02-28 Published:2020-03-27
  • Supported by:
     

摘要: 为解决大流检测过程中普遍存在的精度低、耗费高等问题,提出了一种面向软件定义网络的大流检测机制SampleFlow.通过综合sFlow和OpenFlow技术优势,使用粗粒度的采样技术识别出疑似大流,在OpenFlow交换机上安装测量流表项,对这些疑似大流进行细粒度测量判别,以达到准确检测大流的目标,通过采样点优化选择算法,还可降低采样的冗余性.实验结果表明,SampleFlow能够有效降低测量负载,并提升大流检测的精度.

关键词: 软件定义网络, 网络测量, 大流检测, 采样

Abstract: SampleFlow, a heavy hitter detection mechanism in software defined networks, is proposed to solve the problems of low detection accuracy and high measurement cost. By combining the technical advantage of sFlow and OpenFlow, SampleFlow firstly detects a set of suspicious heavy hitters by using the coarse-grained sFlow sampling method, and then installs measurement flow entries on specific OpenFlow switches to perform a fine-grained measurement on these suspicious heavy hitters, so as to determine the true heavy hitters. Besides, SampleFlow also uses a sampling position optimization method to decrease the sampling redundancy. Experiment results show that SampleFlow can decrease the measurement cost, and increase the heavy hitter detection accuracy effectively.

Key words: software defined network, network measurement, heavy hitter detection, sampling

中图分类号: