北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2020, Vol. 43 ›› Issue (1): 40-45.doi: 10.13190/j.jbupt.2019-035

• 论文 • 上一篇    下一篇

基于BP神经网络的CSI无源目标分类方法

蒋芳, 张南飞, 胡艳军, 王翊   

  1. 安徽大学 计算智能与信号处理教育部重点实验室, 合肥 230601
  • 收稿日期:2019-03-03 出版日期:2020-02-28 发布日期:2020-03-27
  • 通讯作者: 胡艳军(1967-),女,教授,博士生导师,E-mail:yanjunhu@ahu.edu.cn. E-mail:yanjunhu@ahu.edu.cn
  • 作者简介:蒋芳(1981-),女,讲师.
  • 基金资助:
    国家自然科学基金项目(61501002);安徽省高等学校自然科学研究项目(KJ2018A0019);安徽大学博士科研启动基金项目

BP Neural Network Based CSI Device-Free Target Classification Method

JIANG Fang, ZHANG Nan-fei, HU Yan-jun, WANG Yi   

  1. Key Laboratory of Intelligent Computing and Signal Processing(Anhui University), Ministry of Education, Hefei 230601, China
  • Received:2019-03-03 Online:2020-02-28 Published:2020-03-27
  • Supported by:
     

摘要: 针对无源目标分类系统中精度和费用之间不平衡、采用手工提取特征的方法进行特征提取工作量较大的问题,提出了一种基于误差逆传播(BP)神经网络的信道状态信息(CSI)无源目标分类方法.通过提取WiFi信号的CSI作基信号,并结合具有自主学习数据特征能力的神经网络方法,设计了BP神经网络的训练模型,减少了手工提取特征带来的开销.实验结果表明,以身高分类为例,所提方法能够区分4个不同身高段,且平均分类准确度可以达到90%以上.

关键词: 信道状态信息, 误差逆传播神经网络, 无源目标分类

Abstract: Aim at the imbalance between accuracy and expense, the heavy workload of manually extracting features in current device-free target classification systems, a channel state information (CSI) device-free target classification method based on error back propagation (BP) neural network is proposed. By extracting the CSI of the WiFi signal as the base signal and combining the neural network method with the characteristic of autonomous learning data features, the BP neural network training model is designed, which reduces the overhead caused by the manual extraction feature. Taking the height classification as an example, an experiment is carried out, and it is shown that the proposed method can distinguish four different height segments, and the average classification accuracy can reach more than 90%.

Key words: channel state information, error back propagation neural network, device-free target classification

中图分类号: