北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2020, Vol. 43 ›› Issue (1): 116-121.doi: 10.13190/j.jbupt.2019-049

• 研究报告 • 上一篇    下一篇

非平稳噪声下稀疏表示的DOA估计算法

韦娟1, 曹凯军1, 宁方立2,3   

  1. 1. 西安电子科技大学 通信工程学院, 西安 710071;
    2. 西北工业大学 机电学院, 西安 710072;
    3. 东莞市三航军民融合创新研究院, 东莞 523808
  • 收稿日期:2019-04-04 出版日期:2020-02-28 发布日期:2020-03-27
  • 作者简介:韦娟(1973-),女,副教授,E-mail:weijuan@xidian.edu.cn.
  • 基金资助:
    国家自然科学基金项目(51675425);2018年东莞市社会科技发展(重点)项目(20185071021600);陕西省重点研发计划项目(2018SF-365,2018GY-181)

DOA Estimation Algorithm for Sparse Representation Under Non-Stationary Noise

WEI Juan1, CAO Kai-jun1, NING Fang-li2,3   

  1. 1. School of Telecommunications Engineering, Xidian University, Xi'an 710071, China;
    2. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
    3. Dongguan Sanhang Civil-Military Integration Innovation Institute, Dongguan 523808, China
  • Received:2019-04-04 Online:2020-02-28 Published:2020-03-27
  • Supported by:
     

摘要: 为提高非平稳噪声下远场非相干窄带信号波达方向(DOA)的估计精度,提出了一种基于稀疏重构的DOA估计算法.采用类协方差差分算法构造差分矩阵,抑制非平稳噪声的影响;基于类旋转不变子空间参数估计算法基本原理构造稀疏表示模型与权函数;利用加权l1范数对模型求解,实现DOA估计.仿真结果表明,与传统的协方差差分算法、噪声协方差矩阵估计算法、秩迹最小化算法以及稀疏重构算法相比,所提算法不仅能较好地抑制非平稳噪声的影响,而且在低信噪比、低快拍数情况下具有较强的稳健性和较高的估计精度.

关键词: 非平稳噪声, 波达方向估计, 稀疏重构, 加权l1范数

Abstract: In order to improve the direction of arrival (DOA) estimation accuracy of the far-field non-coherent narrow-band signal in non-stationary noise environment, an improved DOA estimation algorithm based on sparse reconstruction is proposed. Firstly, the class differential covariance algorithm is used to construct the difference matrix to suppress the influence of non-stationary noise. Then the sparse representation model and the weight function is constructed based on the basic principle of estimation of signal parameters via rotational invariance technique algorithm. Finally, the DOA estimation is realized by solving the model with weighted l1 norm. Simulation shows that, compared with the traditional covariance difference algorithm, the noise covariance matrix estimation algorithm, the rank trace minimization algorithm, the sparse reconstruction algorithm, the proposed algorithm can not only suppress the influence of non-stationary noise effectively, but also has strong robustness and high estimation accuracy under low signal noise ratio and low snapshot number.

Key words: non-stationary noise, direction of arrival estimation, sparse reconstruction, weighted l1 norm

中图分类号: