[1] 张青, 饶灿. 典型区域城市PM2.5与PM10比值相关性研究[J]. 绿色科技, 2019(12):129-130. Zhang Qing, Rao Can. Correlation analysis between PM2.5 and PM10 ratio in typical regional cities[J]. Journal of Green Science and Technology, 2019(12):129-130.
[2] 刘晓红, 王慧. 基于中欧对比视角的货运机动车尾气排放PM2.5分析研究[J]. 环境科学学报, 2019, 39(8):2830-2838. Liu Xiaohong, Wang Hui. An analysis of vehicle-related PM2.5 emissions:the perspective from China and Europe[J]. Acta Scientiae Circumstantiae, 2019, 39(8):2830-2838.
[3] 李建新, 刘小生, 刘静, 等. 基于MRMR-HK-SVM模型的PM2.5浓度预测[J]. 中国环境科学, 2019, 39(6):2304-2310. Li Jianxin, Liu Xiaosheng, Liu Jing, et al. Prediction of PM2.5 concentration based on MRMR-HK-SVM model[J]. China Environmental Science, 2019, 39(6):2304-2310.
[4] 王平, 张红, 秦作栋, 等. 基于wavelet-SVM的PM10浓度时序数据预测[J]. 环境科学, 2017, 38(8):3153-3161. Wang Ping, Zhang Hong, Qin Zuodong, et al. PM10 concentration forecasting model based on wavelet-SVM[J]. Environmental Science, 2017, 38(8):3153-3161.
[5] 任才溶, 谢刚. 基于随机森林和气象参数的PM2.5浓度等级预测[J]. 计算机工程与应用, 2019, 55(2):213-220. Ren Cairong, Xie Gang. Prediction of PM2.5 concentration level based on random forest and meteorological parameters[J]. Computer Engineering and Applications, 2019, 55(2):213-220.
[6] 黄婕, 张丰, 杜震洪, 等. 基于RNN-CNN集成深度学习模型的PM2.5小时浓度预测[J]. 浙江大学学报(理学版), 2019, 46(3):370-379. Huang Jie, Zhang Feng, Du Zhenhong, et al. Hourly concentration prediction of PM2.5 based on RNN-CNN ensemble deep learning model[J]. Journal of Zhejiang University(Science Edition), 2019, 46(3):370-379.
[7] 张俐, 袁玉宇, 王枞. 基于最大相关信息系数的FCBF特征选择算法[J]. 北京邮电大学学报, 2018, 41(4):86-90. Zhang Li, Yuan Yuyu, Wang Cong. FCBF feature selection algorithm based on maximum information coefficient[J]. Journal of Beijing University of Posts and Telecommunications, 2018, 41(4):86-90.
[8] 崔鸿雁, 徐帅, 张利锋, 等. 机器学习中的特征选择方法研究及展望[J]. 北京邮电大学学报, 2018, 41(1):1-12. Cui Hongyan, Xu Shuai, Zhang Lifeng, et al. The keytechniques and future vision of feature selection in machine learning[J]. Journal of Beijing University of Posts and Telecommunications, 2018, 41(1):1-12.
[9] Dietterich T G. Machine learning research:four current directions[J]. AI Magazine, 1997, 18(4):97-136.
[10] 刘云翔, 陈斌, 周子宜. 一种基于随机森林的改进特征筛选算法[J]. 现代电子技术, 2019, 42(12):117-121. Liu Yunxiang, Chen Bin, Zhou Ziyi. An improved feature selection algorithm based on random forest[J]. Modern Electronics Technique, 2019, 42(12):117-121.
[11] Geurts P, Ernst D, Wehenkel L. Extremely randomized trees[J]. Machine Learning, 2006, 63(1):3-42.
[12] 黄丛吾, 陈报章, 马超群, 等. 基于极端随机树方法的WRF-CMAQ-MOS模型研究[J]. 气象学报, 2018, 76(5):779-789. Huang Congwu, Chen Baozhang, Ma Chaoqun, et al. WRF-CMAQ-MOS studies based on extremely randomized trees[J]. Acta Meteorologica Sinica, 2018, 76(5):779-789.
[13] 刘金硕, 刘必为, 张密, 等. 基于GBDT的电力计量设备故障预测[J]. 计算机科学, 2019, 46(S1):392-396. Liu Jinshuo, Liu Biwei, Zhang Mi, et al. Fault prediction of power metering equipment based on GBDT[J]. Computer Science, 2019, 46(S1):392-396.
[14] 雷雪梅, 谢依彤. 用于高血压菜谱识别的基于遗传算法的改进XGBoost模型[J]. 计算机科学, 2018, 45(增刊1):476-481. Lei Xuemei, Xie Yitong. Improved XGBoost model based on genetic algorithm for hypertension recipe recognition[J]. Computer Science, 2018, 45(S1):476-481.
[15] Friedman J H. Greedy function approximation:a gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5):1189-1232. |