[1] Wang L, Zheng C X, Ye J L, et al. A very efficient real-time QRS detection method[J]. Beijing Biomedical Engineering, 1998(4):217-222.
[2] Cheng X M, Lin J S, Zhang Z G. An improved template matching method for high resolution ECG[J]. Chinese Journal of Biomedical Engineering, 1999, 18(1):89-96.
[3] Chen Y Q, Li G, Ye W Y, et al. An improved algorithm of adaptive coherent model in the application of electrocardiograph[J]. Signal Processing, 2002, 18(3):244-248.
[4] 马玉润. ECG预处理与QRS波群检测技术研究[D]. 兰州:兰州大学, 2013.
[5] Liu Z D, Chen J, Tang M F. Pulse transit time detection based on waveform time domain feature and dynamic difference threshold[J]. Journal of Biomedical Engineering, 2017, 34(3):329-334.
[6] Yan H L, An Y, Wang H F, et al. Feature extraction of ECG hearbeats based on convolutional neural networks[J]. Computer Engineering and Design, 2017, 38(4):1024-1028.
[7] Zhang J L, Zheng X. Stationary wavelet transform and new threshold function used in ECG signal denoising[J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40(1):28-31.
[8] Kher R, Vala D, Pawar T, et al. Implementation of derivative based QRS complex detection methods[C]//3rd International Conference on Biomedical Engineering and Informatics. Yantai:[s. n.], 2010:927-931.
[9] Dong S, Xu F, Lingwood B, et al. R-wave detection:a comparative analysis of four methods using newborn piglet ECG[C]//International Conference on Information Sciences Signal Processing & Their Applications. Kuala Lumpur:[s. n.], 2010:320-323.
[10] Zhang Q L, Su S M, Wang M. QRS feature extration algorithm based on wavelet transform[J]. Journal of Zhengzhou University, 2017, 49(4):100-103.
[11] 姚成. 心电信号智能分析关键技术研究[D]. 长春:吉林大学, 2012.
[12] Yochum M, Renaud C, Jacquir S. Automatic detection of P, QRS and T patterns in 12 leaders ECG signal based on CWT[J]. Biomedical signal processing and control, 2016(25):46-52.
[13] Madeiro J P, Cortez P C, Marques J A, et al. An innovative approach of QRS segmentation based on first-derivative, Hilbert and wavelet transforms[J]. Medical Engineering & Physics, 2012, 34(9):1236-1246.
[14] Wang Z X, Zhang S J, Zeng X P. Shape recognition algorithm for ST-segment of ECG signal[J]. Journal of Computer Applications, 2011, 31(10):2811-2810.
[15] Gao Z, Kong F, Zhang X. Accurate and rapid QRS detection for intelligent ECG monitor[C]//Third International Conference on Measuring Technology and Mechatronics Automation.[S. l.]:IEEE Computer Society, 2011:298-301.
[16] Dai J X, Li Z X, Song H X. The analysis and application of signal Lipschitz exponent based on wavelet[J]. Journal of Nanjing University of Posts ant Telecommunications (Natural Science), 2008, 28(6):69-73,82.
[17] Ma A P, Liu L. Research on fault signal detection of transmission line based on wavelet theory[J]. Sichuan Electric Power Technology, 2010, 30(5):356-361.
[18] 赵毅. 基于小波分析和神经网络的异常心电信号分类研究[D]. 太原:太原理工大学, 2015.
[19] Su L M, Dai Q J, Wang J. R waveform calibration and QRS waveform detection of B-splines-based biorthbogonal wavelets[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2009, 13(9):1657-1660.
[20] 马宪. 远程动态心电信号的信息提取与认知[D]. 北京:北京邮电大学, 2013. |