北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2017, Vol. 40 ›› Issue (5): 123-128.doi: 10.13190/j.jbupt.2016-221

• 研究报告 • 上一篇    下一篇

使用有序词语移动距离特征进行中文文本蕴含识别

谭咏梅, 王敏达, 牛少彰   

  1. 北京邮电大学 计算机学院, 北京 100876
  • 收稿日期:2016-09-07 出版日期:2017-10-28 发布日期:2017-11-21
  • 作者简介:谭咏梅(1975-),女,副教授,硕士生导师,E-mail:ymtan@bupt.edu.cn.
  • 基金资助:
    国家自然科学基金项目(U1536121,61370195)

Chinese Textual Entailment Recognition Via Ordered Word Mover Distance

TAN Yong-mei, WANG Min-da, NIU Shao-zhang   

  1. School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2016-09-07 Online:2017-10-28 Published:2017-11-21

摘要: 提出了一种基于有序词语移动距离的中文文本蕴含识别方法,该方法基于word2vec词向量计算有序词语移动距离特征,进而利用有序词语移动距离特征和传统语言学特征通过支持向量机生成分类模型,然后使用分类模型进行蕴含识别,最终得到蕴含结果.该方法在RITE-VAL评测任务的CS数据上的MacroF1为0.629,超过RITE-VAL的最优评测结果(BUPTTeam,0.615).实验结果表明,该方法可以提升中文文本蕴含识别系统的性能.

关键词: 文本蕴含, word2vec, 有序词语移动距离, SVM

Abstract: Chinese textual entailment recognition method based on ordered word mover distance was proposed. The ordered word mover distance was computed based on word2vec. The ordered word mover distance feature, grammar feature, and semantic feature were used to generate classification module based support vector machine (SVM). With use of classification module, the entailment result was obtained. An experiment was conducted in the CS data of RITE-VAL evaluation task in 2014, the MacroF1 of the experiment is 0.629, outperforming optimal value (BUPTTeam,0.615), which illustrates the effectiveness of the method to lifting the performance of Chinese textual entailment.

Key words: textual entailment, word2vec, ordered word mover distance, support vector machine

中图分类号: