北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2016, Vol. 39 ›› Issue (4): 67-70.doi: 10.13190/j.jbupt.2016.04.013

• 论文 • 上一篇    下一篇

小波分解在移动用户行为识别中的应用

贺炎, 王斌, 王忠民   

  1. 西安邮电大学 计算机学院, 西安 710121
  • 收稿日期:2015-11-19 出版日期:2016-08-28 发布日期:2016-08-28
  • 作者简介:贺炎(1980-),女,硕士,E-mail:heyan0220@xupt.edu.cn;王忠民(1967-),男,教授,硕士生导师.
  • 基金资助:
    国家自然科学基金项目(61373116);陕西省教育科学“十二五”规划课题(SGH140601);陕西省教育厅专项科研计划项目(16JK1706)

Application of Wavelet Decomposition in Mobile User Behavior Recognition

HE Yan, WANG Bin, WANG Zhong-min   

  1. School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
  • Received:2015-11-19 Online:2016-08-28 Published:2016-08-28

摘要: 针对目前行为识别通用模型对步行、上楼、下楼等易混淆行为识别准确率较低的情况,提出了一种基于小波分解的移动用户行为识别方法,从小波分解后不同频率子信号的低频近似系数中提取小波能量、小波峰个数和平均波峰幅值等特征,基于决策树分类器建立与用户无关的行为识别通用模型. 分别用典型时域特征数据集和小波特征数据集对该通用模型进行验证. 实验结果表明,采用新方法后,3种易混淆行为的平均识别准确率提高了14.82%,减少了误判.

关键词: 小波分解, 小波能量, 小波峰, 行为识别

Abstract: For case of low recognition accuracy when using universal model to distiguish confusing human behaviors such as walking, going upstairs and downstairs, a mobile user behavior recognition method based on wavelet decomposition was proposed. It extracts the wavelet energy distribution, the number of wavelet peak and the everage wavelet peak amplitude from the sub-signals generated by wavelet decomposition, and also the decision tree classifier is used to build the user-independent behavior recognition model. The typical time-domain feature dataset and wavelet feature dataset were respectively used to train and test the universal model. Experiments show that the proposed method improves the average accuracy about 14.82% of the three confusing behaviors, and reduces the possibility of misjudgment.

Key words: wavelet decompositon, wavelet energy, wavelet peak value, behavior recognition

中图分类号: