[1] Huang Boyan, Xiao Yegui, Ma Yaping, et al. A simplified variable step-size LMS algorithm for Fourier analysis and its statistical properties[J]. Signal Processing, 2015, 117(12):69-81.
[2] Lu Jing, Qiu Xiaojun, Zou Haishan. A modified frequency-domain block LMS algorithm with guaranteed optimal steady-state performance[J]. Signal Processing, 2014, 104(6):27-32.
[3] 洪丹枫, 苗俊, 苏健, 等. 一种变步长凸组合LMS自适应滤波算法改进及分析[J]. 电子学报, 2014, 42(11):2225-2230. Hong Danfeng, Miao Jun, Su Jian, et al. An improved variable step-size convex combination of LMS adaptive algorithm and its analysis[J]. Acta Electronica Sinica, 2014, 42(11):2225-2230.
[4] Arenas-Garcia J, Figueiras-Vidal A R, Sayed A H. Mean-square performance of a convex combination of two adaptive filters[J]. IEEE Transactions on Signal Processing, 2006, 54(3):1078-1090.
[5] 于霞, 刘建昌, 李鸿儒. 基于箕舌线函数的快速凸组合最小均方算法[J]. 系统仿真学报, 2010, 22:1097-1100. Yu Xia, Liu Jianchang, Li Hongru. Fast convex combination of least-mean-square algorithm based on versoria function[J]. Journal of System Simulation, 2010, 22:1097-1100.
[6] Nascimento V H, De Lamare R C. A low-complexity strategy for speeding up the convergence of convex combinations of adaptive filters[C]//Acoustics, Speech and Signal Processing(ICASSP), 2012 IEEE International Conference on.[S. l.]:IEEE, 2012:3553-3556.
[7] 曾乐雅, 许华, 王天睿. 采用瞬时转移结构的凸组合最小均方算法[J]. 空军工程大学学报(自然科学版), 2016, 17(1):66-71. Zeng Leya, Xu Hua, Wang Tianri. Convex combination of LMS adaptive filtering algorithm using instantaneous transfer scheme[J]. Journal of Air Force Engineering University(Natural Science Edition), 2016, 17(1):66-71.
[8] Sang M J, Seo J H, Park P G. A variable step-size diffusion normalized least-mean-square algorithm with a combination method based on mean-square deviation[J]. Circuits Systems and Signal Processing, 2015, 34(10):3291-3304. |