北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2015, Vol. 38 ›› Issue (s1): 45-48.doi: 10.13190/j.jbupt.2015.s1.011

• 论文 • 上一篇    下一篇

基于智能优化的分布式网络流量预测方法

肖甫1,2, 赵帅帅1, 王少辉1,2, 王汝传1,2, 徐思雅3   

  1. 1. 南京邮电大学 计算机学院, 南京 210003;
    2. 江苏省无线传感网高技术研究重点实验室, 南京 210003;
    3. 北京邮电大学 网络与交换技术国家重点实验室, 北京 100876
  • 收稿日期:2014-09-06 出版日期:2015-06-28 发布日期:2015-06-28
  • 作者简介:肖 甫(1980—), 男, 教授, 博士生导师, E-mail: Xiaof@njupt.edu.cn.
  • 基金资助:

    国家自然科学基金项目(61373137, 61373017, 61373139);江苏省高校自然科学研究计划重大项目(14KJA520002);江苏省六大人才高峰项目(2013-DZXX-014);江苏省青蓝工程项目和国家高技术研究发展计划(863计划)项目(2011AA05A116)

Traffic Prediction Method Used in Distributed Network Based on Intelligent Optimization

XIAO Fu1,2, ZHAO Shuai-shuai1, WANG Shao-hui1,2, WANG Ru-chuan1,2, XU Si-ya3   

  1. 1. College of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
    2. Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing 210003, China;
    3. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2014-09-06 Online:2015-06-28 Published:2015-06-28

摘要:

网络流量预测是网络管理的重要内容,高效的流量预测方法可提高网络管理效率. 针对网络流量的时变性等问题,提出了一种基于智能优化的分布式网络流量预测方法. 该方法采用果蝇算法优化3次指数平滑预测模型中的平滑因子,对时间窗口内收集到的网络流量进行预测,从而有效地提高3次指数平滑模型下网络流量预测的准确度与效率. 仿真实验表明:相比传统3次指数平滑预测模型,此方法可解决平滑因子的不确定性所导致的预测结果误差问题,有效提高了网络流量预测精度.

关键词: 流量预测, 果蝇优化算法, 指数平滑

Abstract:

Efficient network traffic prediction method can improve the efficiency of network management. On account of problems of network traffic if as burst, time-varying, nonlinear problems happen that caused by various coefficients, a distributed network traffic prediction method was proposed obeyed by intelligent optimization. The fruit fly optimization algorithm was adopted in this method to optimize the smoothing coefficients of traditional triple exponential smoothing forecasting model. By predicting network traffic that is collected within time windows, this method effectively improves the efficiency of network traffic prediction. Simulation indicates that, compared with traditional triple exponential smoothing forecasting model, the proposed prediction model can solve the problem of prediction error caused by smoothing coefficient. The optimal smoothing coefficient can be selected adaptively, thus improves the prediction accuracy.

Key words: traffic prediction, fruit fly optimization algorithm, exponential smoothing

中图分类号: